Menoufiya University Faculty of Engineering Shebin El-Kom Final Exam

Academic Year: 2014-2015

Post Graduate: Diploma

Department: Basic Engineering science Subject: Computational Fluid Dynamics

Time Allowed: 3hrs Date: 12/1/2015

Note: Assume any data required, state your assumption clearly.

Question (1)

(25 Marks)

Solve the following equation using Runge Kutta Mothod

$$\frac{d^2y}{dt^2} + 0.5\frac{dy}{dt} + 7y = 0$$
 Where y(0) =4 and $\frac{dy}{dt}\Big|_{x=0}$ = 2 from t = 0 to 5 using step 1.

Question (2)

(25 Marks)

The ideal incompressible flow in a convergent-divergent nozzle can be described by

 $\frac{\partial^2 \psi}{\partial r^2} + \frac{\partial^2 \psi}{\partial v^2} = 0$, where ψ is the stream function. Due to flow symmetry, only the upper half of the nozzle

needs to be solved, see the figure. The nozzle wall can be represented by $y_w(x) = D - \frac{D}{2}\sin(\pi \frac{L-x}{L})$. The

velocity distribution through the nozzle can be calculated from $u = \frac{\partial \psi}{\partial v}$ and $v = -\frac{\partial \psi}{\partial x}$, where u and v are

the horizontal and vertical velocity component, respectively. Using the boundary conditions shown in the figure, answer the following:

- a. Describe the solution procedure of this problem
- using finite difference method

 b. Write a computer program for the solution procedure described in a. $\frac{\partial \psi}{\partial x}$
- c. Show how the velocity distribution can be obtained numerically.

Question (3)

(25 Marks)

A property φ is transported by means of convection and diffusion through the one-dimensional domain sketched in the figure The governing equation is $\frac{d\rho u\varphi}{dx} = \frac{d}{dx} \left(\Gamma \left(\frac{d\varphi}{dx} \right) \right)$ the boundary conditions are φ_0

=1 at x = 0 and $\phi_L = 0$ at x = L. Using five equally spaced cells and the central differencing scheme for convection and diffusion, calculate the distribution of φ as a function of x. The following data apply: u = 0.1 m/s, length L = 1.0 m, $\rho = 1.0 \text{ kg/m}^3$, $\Gamma = 0.1 \text{ kg/m.s}$.

$$\phi = 1$$

$$x = 0$$

$$\phi = 0$$

$$x = L$$

Question (4)

(25 Marks)

Drive an expression for pressure correction equation using SIMPLE algorithm and draw a flowchart for the solution of Navier-Stokes equations using this algorithm

GOOD LUCK

Dr. Samy M. El-Behery