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ABSTRACT

This paper describes the effects of component nonidealities upon the
performance of analog and sampied data adaptive antenna arrays. It is shown
that the effects of analog implementation differ significantly from those
encountered in ideal cases. It is also shown that the effects of nonzero
mean errors, such as offset voltages and nonlinearities of the input
_ multipliers contribute an excess mean square error which is inversely
/ proportionzl to the parameter which controis the stability and the rate of
convergence of the algorithm. A configuration is presented which minimises
these effects by distributing the loop gain of the first multiplier around
the signal path.

I-INTRODUCTION

An adaptive antenna [s one whose parameters are caused (o vary as a
function of the interference field so that it always stays in an optimal or
fairly optimal condition. In other words, adaptive antenna can be considered
as a filter which has variable parameters. If the desired antenna output can
be defined, then the antenna parameters can be varied until the mean square
error between the desired output and the actual output is minimised. The
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problem with fixed parameter optimal solutions is that interference is seldom
constant In space or time and an antenna which Is initially optimum in some
location will rapidly become very suboptimal as the interference changes
either because of the appearance of new interference transmission, changes in
the local scattering environment through movement of vehicles, ships,
aircraft etc., variation iIn the orientation of the antenna If scanning or if
it is mounted on a moving vehicle or aircraft, or changes In operating
frequency. As an example, the null steering antenna arrays are extremely
sensitive to some of these changeés and it is hardly attempting to use them as
filxed parameter arrays.

The interest, in implementation of analog and sampled data adaptive
antenna has recently increased because of advances in charge coupled devices
and discrete design for UHF adaptive antenna array processors. The first
known work to consider component nonidealities was performed in 1963 by
P. Low [1]. He proved that systems constructed with imperfect components
could be expected to converge to a sclution if such a solution existed. Other
previous work in adaptive filtering by Kaunitz [2] assumed an added random
noise. Widrow {3] had shown that the effect of an additive zero-mean noise in
the weight vector is an excess mean square error which is proportional to the
step size y. This noise was added to the weights to model the errors caused
by the estimation of the actual gradient of the mean square error performance
surface. Rosenberger [4] assumed thata zero-mean band-limited random process
with a finite variance was added into the output of an adaptive noise
canceller before it was fed back to the weights. His results showed that the
maximum achievable echo suppression, for this case, was inversely
proportional to p, i.e., the smaller the H the better the system worked.
Thomas {5] make the same assumptions as Rosenberger, and showed that the
choice of u which allowed the most convergence is the smallest value of pu.
Other papers considering nonideal multipliers [4,7,8] showed that the
qualitative behavior of adaptive filters, using nonideal multipliers is
similar to that of ideal adaptive filters. These results agreed with the
general belief that adaptive filters can adapt around their own internal
errors. It will be shown in this paper that this is not the case when one
considers the effects of internal nonzero mean errors,

To the author’s knowledge, no body considered the effects of many of
the common errors found in adaptive antenna array processors. It was felt
that by providing information on the sources of errors and limitations
resulting from these errors as well as solutions for these errors, adaptive
antenna arrays might gain greater acceptance among researchers.

I-ANALYSIS OF ADAPTIVE ANTENNA ARRAY PROCESSCRS

For a narrow-band applications, an adaptive array controlled by the
discrete-time least-mean-square  (LMS) aigorithm tekes the form shown in
fig, 1, which illustrates the processing of the output of a single array
element. In this diagram, the first local oscillator following the antenna
slement seiects the R.F. frequency of interest w, and mixes it to a constant
frequency w_,, where the desired signal bandwidth is passed. The output of the
bodpuass filter is mixed to intermediate frequency (L.F} Wi, The mixer
outputs are image rejected and the weights are applied. The in-phase and
quadrature (I & Q) weights are controiled by separate LMS feedback loops. The
control artempts to minimise the mean square error (MSE) between the
array output y{(t} and a reference signal d{t}; the Iatter waveform could, for
example, be obtained by demodulating the array output itself (8}, or [rom a
separate reference antenna element [10].
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Fig. 1, Adaptive Array Processor Using LMS Algorithm.

For an L-element array, the discrete-time in-phase and quadrature
element ogutput are defined to he

Xfn) = Ixy{n} xo(n) ........ xQL(n)]T (1
The 2L variable weights vector is deflned as.
Win) = [wiln) wol) .. wor ) T (2
The array output is given by
yin) = ET(n))_(_(n)
= XV (n)W(n) (3)
Therefore, the error signal is given by
e(n) = dln) - y(n)
= din) - W Tm)X(n) (4-a)
" e = d) - XT(e)Win) (4-b)
The squared value of eln) is therefore, .
e 2 = din) 2 - 2dW Taxm) + w Tmixmx Tmwin (5)

The MSE or cost function fis defined as
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?(n) = Eleln} 2]
= Eldin) 2] - 2E[d(n)X T(n)]‘r_!(n) + !V_T(n)EIE(n)_X_ T(n)]V_V_’(n) (6)

where E[.] denotes expectation operation.
Define the cross-correlation between the reference signal d(n) and the
vector X(n} as

Stn} = Eld(n)X(n}] M
and the lnput correlation matrix as
R(n) = E[X(n)X T(n)] (8)

Therefore, the MSE §(n) at time n can be expressed in terms of S(o} and R(n)
as

{(n) = Eld(n) ?] - 2§T(n)V_V(n) + W T(n)R(n)Win) (9)
The MSE in Eq.(9) is a quadratic function of the weights W(n). Such a
function has only one minimum., The object of the adaptive algorithm is to
adjust the weights {w;, i=1,2,3,...2L} so that the minimum mean square
point is reached. Gradlent methods are commonly used for this purpose [3].
The gradient vector G{n) of the MSE can be obtained by differentiating
Eq.{9) with respect to Win) as

[ 282w o ]
B{(n)/‘ov\rg(n)
Gln) =] s = -25(n) + 2R{n}W(n) (10)

.............

] \oﬁ(n)/ \Dsz(n)J

For stationary input processes, the optimum weighting vector W__* can be
obtained by setting G{n) in Eq.(10) equal to zerg, i.e.,

25 - 2RW* = 0 (L)
and therefore,
w*-rls {12)

Note that R(n} and S{n) are repiaced by R and § for stationary input process.
Eq.(12) is referred to as Weiner-Hopf equation (11}

AlMethod of Steepest Descent

The major task of the adaptive algorithm is to find 2 recursive
solution to Eq.(12} avoiding matrix inversion. One way of doing this would be
to use the steepest descent method ([3]. In this method, the adaptacion
starts with an arbitrary set of initlal values, W(0), for the weights. an
iterated change in the weighting coefficients in the direction of the
negative gradient; of the MSE is performed until the minimum point is reached.
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Therefore, the weighting coefficients are updated by the steepest descent
method as follows

Wn+1) = Win) +).1( - Gn} ) (13}

where u is a positive constant which controls stability and the rate of
convergence.

B)Least Mean Square Method

The method of steepest descent described above requires the
determination of the gradient vector at successive points on the MSE
performance surface. In practice, the true values of the gradient are not
available (the calculation of expectation is not feasible in practicel. To
overcome this difflculty, the least mean square {LMS) method provides a
practical solution for implementing the method of steepest descent. In this
case, an estimate of the gradient of the MSE is used instead of the true
gradient [3]. This gradient estimate is determined by considering the square
value of the instantaneous error signal as an estimate of the MSE. Therefore,
by differentiating Eq.(5} with respect to W(n), yields

[peln) 2/pw, 1
eln) 2rawy

E}_(n} = = - 2e(n)X(n) (14)
Tdeln) 2/?>w2L

Substituting Egq.(14) into Eq.(13) results in the LMS algorithm as
Win+l) = Win) + 2pe(niX{n) {15)

Sampled data adaptive antenna array using LMS algorithm has been given
already in Fig. 1. Although this was mainly intended to illustrate
mathematical procedures and basically a block diagram representation of the
equations, it is probably the most efficient implementation in terms of
adaptation rate and quality of solution. It is also very expensive to
implement demanding real time digital data throughput and for practical
purpeses it is better to adopt cheaper methods either analog or hybrid
analog/digital schemes which have. a convergence rate penalty but give just as
good as solucion eventually. In many practical interference cases these
slower impiementation are entirely adequate.

Analog implementation of the LMS algorithm Eq.(13), is done simply by
setting {12]

dWHde = - pBo) = 2pelcX(e) (161

and solving with a set of integrators

Wit}

it

t
WO +p § Gl dc

[0

t
W) + '-’}‘J elt)X(x) dr (17)
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Continuous time implementation of adaptive antenna with LMS algorithm in
Eq.(17) is shown In Fig. 2.

M-EFFECTS OF COMPONENT NONIDEALITIES

For a practical multiplier, the output will differ from the
theoretical product of its inputs by an amount ¢, as defined by

Vo = KyVyeVy + €V, V) (18)
where V, Is the multipller output voltage, and V are the multiplier
inputs, and K;V.V, is the true multiplier proﬁxct The’ error term can be

expanded into teran directly related to the error sources in the multiplier
circuit [13). In Fig. 2, each of the input multipliers has two inputs defined
as x{t) and 2pelt), where i is the tap number. Therefore, the ourput
voltage of the ith first multiplier is given by

ith Elemunt
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Fig. 2, Adaptlve Arxray Processor- Using Continuous-Time LMS Algorithm.

VA = Kyllegt) + xogM2pelt) + yoe) + 25 + Hx(6),2pe(t)] (19)

where the superscript 1 refers to first multiplier. The three sources of d.c.
errors in an analog multiplier are: input offsets x Yos» oOutput offsec
Z,5» and nonlinearity f[xi(t),2)1e(t)l. Therefore, Eg. (’ﬁa) can be rewritten
as

A

M

-

v
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LR

V‘},i = 2pK je(tdx;t) + Kjlxiltly g + 2peltix oo + 245 + kzxi(l:)2
+ k3(2pe(t) 2| (20)

If the multiplier is followed by a gain amplifler such that the true product
Is  2px; dtle(t), then one can assume that K| = |. This yields

#
‘lﬂ Vgi = 2Pe(t)x l(t) + [(xi(t)yos + ZPE(t)X 05) + ZDS + kzxx(t)z
+ kg(2pele) 3 (21)
where x(t:)'y‘,s + 2peltdx are feedthrough terms due to input offset
voltag? Is a Btput offser voltage independent of x{t} and eft), and
and %% (Zye(t)) are nonlinear terms due to transistor mismatch. The

(c)
fee&r.hrough terms can be neglected in high frequency applications (since the
output of the first multiplier goes into an integrator), but must ba
considered in low frequency applications. The terms kox; {t}* and kal2 ).Ie(t))
result in a nonzero d.c. component being added to the weights. e output
offset voltage z,; is added to the true product. The nonlinear terms are
important because the value of their d.c. component is dependent on input
signal power. Therefore, although _one could adeE.t the d.c. balance of the
. multipller so that -z, + k x(t)‘2 + kql2ue(th is zero for particular
. values of x{t) and e(st) the balance wﬁl be destroyed when one of the
; signal power levels is changed

The effects of component nonidealities will be presented in four
parts. First, the effects of input multiplier output offset voltages will be
explained; second, the combined effects of input multipiier output offset
voltages and nonlinearities will be presented; third, the effects of
integrator offset voltages and bias currents will be shown; and fourth, the
other nonlinearities will be considered.

a)The Effects of Input Muitiplier Output Offset Voltages

Assurning that all of the circuit components used in the construction
of a discrete-time adaptive antenna array are ideal, except that an output
offset voltage error occurs In the flrst multipliers, the output of the first
multiplier In the ith tap can be expressed as

Vi) = 2ue (oix () + 2 (22)

Define the vector

T
Zos = [Zog1  Zggn  ceeeeens ZagaL | {23)

.~ whose elements Z,g) are the output offset voitages for the ith input
multlpl!er, where Zysi 15 8 random variable which can take on a value between
zZero and Z4g (max.). These values can be obtained from manufacturer’s data
sheets. The expected value of z,. is considered to be a constant d.c. voltage

/ for all time after the power swn:c?x is turned on. Therefore,

Z=ElZg! (24)
i Applying Eq.(23) into the LMS algorithm in Eq.(l5} yields
Winel) = Win) + 2uen)X(n} + Z;¢ (25)
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Substituting for e(n} fram Eq.(4-b), then
Winel) = Wio) + 2uX(nildin) - XT@Wm] + Zo (26)

Taking the expected valae of both sides of Eq.(26) and assuming Wi(n) to be
fixed, then

Wosl) = Win) - 20EKI0X ToIWa) + ZEEXD] + EZy]
= [l - QJJBN_I(n)' +2JJ§_ + Z {27)

where I is a 2Lx2L unit matrix and R and § are as defined before. As the
autocorrelation matrix R is positive definite, it can be expressed in
normalised form as

R=Q'AQ (28)

where /1 Is a diagonal matrix of the eigenvalues of R, The matrix Qis a
square matrix called the modal matrix of R. Its columns are assumed " to be
orthonormal eigenvectors of R. Consequently [3),

QT =1 and Ql-qf . (29)

Now, let us study the transient respdnse of Eq.(27). First we make a
rotation of coordinates [3] into the "primed" coordinates system such that

Win) = QW '(n) (30)
This will cause a rotation of coordinates into the principal axis of R.
Substituting . Eqs.{28), {29), and (30) into Eq.(27) and premuitiplying both
sides by Q°, Eq.{27} becomes

.w-l(n+l) = [1 - 2)’4]w '(n} + 2}]9-1‘-8— + Q—T—Z- (31)

FSI .]
52
s =Qls =| .. (32)

Define

L SaL
and
7
2
2 -Qz-| .. (33)

291
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Therefore, Eq.(31} may be expressed as

y Win+1) = [I - AN ‘) + 2}@, A (34)
The general solution of Eq.(34) depends on the eigenvalues of the R matrix.
o A scalar expression for each of the primed weights can be deduced from
— Eq.(34) as
wi(n+l) = {1 - 2}1’}9“}2(11] + 2}.15’i + {1 (35}

where ?‘l Is the ith eigenvalue of R and s‘; and z{ are the ith primed cross
corelation and offset voltage error respectively. With initial weight vector
W (0), n+l iteration of Eq.(35) yield

n
wilme ) = (1 - A w0« 2’ S0 - 2p Y™
magQ
n
’ m
+ 2 (1 - 2u %) (36)
(2037
If pis made small enough so that the element (1 - 2}.17’;) has magnitude less
then one, then as the number of iterations increases, " the limit [14]

Lim (1 -2 )™ —y 0 (37)
n—poa
This requires
L-2u77 | < 1
o | yald!
0 < pos U {38)

Considering the second and third terms in the right hand side of Eq.(36) when
A satisfies condition (38) so that the element (1 - 2 a7~} is less than
unity, it can be shown by summing the geomerric series that

n .
Lim Z (1 =20 29 e 12Oy (39)
Rump-Oa M=g

Substituting Eqs.{37) and (39) into Eq.(36) yields
Lim wiln+1) = 0 + s}/ + 2112}1'};

R—p OO
or

Wine1) = win) + f/opn (40)

/ Hence for positive eigenvalue ’)‘; and _p satisfies Eq.(38), the effect of the

; input muleiplier output offset voitage is to alter the steady-state solution

/ of the weight by a value equal to z{/2p°A;. On the other- hand, if Jris zero,
the limit in Eq.(39) tends to oo and )

ft

/ , E
wiln+1) = wiln) + 2§ Z 1M =00 (41)

m=90

Thus the input multiplier output offset voltages cause the weights
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corresponding to zero (negative) elgenvalues to Increase indefinitely.
Therefore, these weights never reach a steady state solution, they saturate
instead. Even those weights corresponding to positive eigenvalues differ
greatly from the ideal. From Eq.(40) it can be seen that as u approaches

zZero, w{ approaches infinity. This is a very interesting result and
contradicts all previous results assuming ideal case [3]. Let us examine

this result more closely. Applying Eq.(12} into Eq.(9), the minimum MSE in .
the ideal case can be expressed as -y

»
);min = Eldn) %) + w'TRw" - 28 Tw"
= Eldtn} 2] - 3Tw? (42)
Now, return to the problem of calculating the MSE when the input E
multiplier has a nonzero output offset voltage and recall from Eq.(40) that
the weight vector was suboptimal, We therefore, want a means of expressing J

its deviation from optimum and the resulting increase in MSE. Define an error
vector as ]

V(o) = W) -w* (43) |
Substituting this value for W(n} in Eq.(9) yields {
§= fmm + wn) - wHTRwWn -wh (44)

When R is nonsingular, the weights approach a steady-state solution which is
found by substituting (S + ;/2}1) in Eq.(27) for S in Eq.{12}, therefore,

W =W+ (1/2pR7I2Z (45)
Hence the effect of the input multiplier output offset vo|tage is to shift
the weéights from their optimum point by an amount (1/2}1)5 “'Z, From Eq.(45),
we have

w-w'=(/20R "z (46)
Substituting Eq.(46) into Eq.(44) shows that the steady-state MSE will be

25Tp-1
jss = §min + (1/2p) “Z'R7Z (47} .

This is the result we were looking for. Eq.(47) reveals that the input
multiplier output offset voltages increase the mean square error by an amount

{1/2p) ZZT_R_'l; over its optimum value. Therefore, even when R is nonsingular
there is an extremely large increase in MSE, which is inversely proportional
to the square of pu. This result contradicts Widrow's ctheory {3l, which
states that the excess MSE is directly proportional to pis

bJThe Combined Effeets of Input Muitiplier Nonlinearities and Offset Voltages \

Consider the input multiplier nonlinearities and assume all other \'».
circuit components are ideal, therefore, Eq.(21) can be reduced to
Voi = Zueladx () + koxyfn) ? + ky(2en)) 2 (48)

Define

) = koxin)? + ky(Zpeln)) * (49)
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es the nonlinear terms lumped together, then combining Eq.(22) and Eq.(49)
o gives the output of the ith input multiplier as
’ Vi = Zpeln)x 4fn) +2tn) (50)
where %i(n) represents the noise In the multiplier output, i.e.,
Si(n} = zOSi + fi(n)
Define the vector A as

Ly = LEGB@  EZ@) ... El2y ()] 1T (50)
Following the same procedure as in the previous section, it is easy to obtain
the steady-state weighting vector as

* -

Wes = W+ (/2pR ™! 5 (52)
and . s

fss - fmm * (1/2)1)2 AR A (53)
cJEffects of Integrator Offset Voltages and Bias Currents

It is easily shown [8] that the integrator errors due to offset
voltages and bias currents can be grouped together such that the steady-state
weight vector is given as

*

Wee =W+ Vo (54)
where Voo = [ Elvgg | Elvgea ! wunees Elvgeor | 17 and v, s the
integrator error due to offset voltage and bias current at ich cap.

Substituting Eq.{54) into Eq.(43) yields

§ - fmin * Yo TR Voo (55)
That is, there Is also excess MSE due to the integrator offser voltages and
bies cwuTents.

e d)Summer Nonideallties
.

The summer used to form the output of the adaptive filter can possess
an offset voltage. This offset voltage will affect the steady-state solution
/af the welght vector and MSE. In this case, the adaptive filter output will
R be given by

~ yo) =y’ + Y (56)

* . . \ .
where ¥ (n) is the output of an ideal summer, and ¥ is a random variable
representing the offset error. Therefore, the weight vector is expressed as

Wlnel) = Win) + 2pX(n)ld(n) - XT ()W) - ¥} (57)

Taking the expectations and rearranging terms yields
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\__’Y(n+1) ={I - 2).\13_)‘_"_/(n) + 2)1(5_ +_I:') (58)
where ‘

T= Exm Y |

Following the same procedure given in section IIf part {a), it is easy to *——
show that
w. =w'srl (59)
Wes =¥ + R 7
and
§ss = §mtn * _CE-IF (60)
IV-SOLUTIONS

This section presents two techniques which offer promise in solving
some of the problems resulting from adaptive system internal cirguit
cormnponent nonidealities.

ajDifferential Integrator

A leaky integrator with a resistor added in the feedback loop in
parallel with the integration capacitor provides a feedback path which may
reduce the drift errors associated with the standard integrators. But this
circuit scill has two drawbacks; 1llthe drift errors are not completly
eliminated, and 2jthe added resistor causes the integrator to have a finite
memory, A better solution, known as differential integrator, is shown io
Fig. 3. This circuit can be used t¢ minimise the effects of bias currents and
offset voltages f[or an analog integrator.

dw, /dt —--——’V\E\: \
/

AY
=

worud
1

2
J!
|

1
\

| S—
-y
V4

Fig. 3, Differential Integrator

The operation of the circuit shown in Fig. 3 is as follows: Assume the
output of the top integrator is vy, and the output of the bottom integrator
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is vo. Since the input to the bottormn integrator is zero, its output will only
be the error terms due to bias currents and offset voltages. the output of
top integrator will be w;(t) plus these same error terms. For identical
OpAmps (a macched palr on a single Integrated circuit), and identical
resistor and capacitor values, the error terms from top and bottom
integrators should be identical. After subtraction, the desired quantity
wilt) is left free of error terms and with infinite memory.

b)Distributed Loop Gain Multiplier

The effects of the most dangerous errors, those caused by the input
multipliers, are configuration dependent. Therefore, a modification in the
standard configuration can reduce these errors. The new configuration "called
distributed loop gain multiplier"” is shown in Fig. 4. In this figure the

noise is reduced by an amount K while the required output signal remains the
same.

x.(t)

Noise due to offset &
Nonlinearity.

dwi/dt

Multiplier

Fig. 4, Distributed Loop Gain Multiplier.

The output from Fig. 4 is given as
dw /de = (Qu/KIKe(tlx (O] + (Qu/K)z o + koxP(t) + kg(Ke(t) 2] (61)
The first term on the right hand side of Eq.(61) represents the required

output signal and the second term represents the noise due to output offset
and nonlinegrities. This term will be referred to as

Dip = @Kz o + kox(t) + kylKelth 2]
= Q/Kz og; + koxP(O)] + 2k gKe(t) (62)
As K- O,SiD-a- 0o, because of the first two terms, and as K —s=o0 »
Bin —so00, because of the last term. Therefore, there must be some value
of K which is optimum_for this configuration, i.e., optimum in the sense- that
‘it reduces- the ‘effects of-the errors. To find this value of K which minimises

the noise power, first square and take the expectations of both sides of
Eq.(62), therefore,

Bl Bpl = (/K 2Elz og; + k2x§m]2 + El2pk gKe2(0)2
+ 8p2kqEle 2z og; + kox2(o]

Taking the derivatlve of the above equation with respect to K and setting the
result equal to zero yields



