MEASURING OF THE BASE CIRCLE RADIUS

AND INVOLUTE PROFILE ERRORS OP GEARS
USING OPTICAS METHOD

S. A. gharraf
Ass.Professor, Prod.Eng.Dept.Alex.Unirersity

Abstract

It is, in principle, impossible to determine by measuring a gear either the module, the pressure ancle or the pitch circle radius. It remains possible to determine the various dimensions of a gear when the base radius is known the measurement of same if for this reason essential and we will now describe an optical acurate method which permit to find the base radius, also it can be continued to give the correctness of the ahape of the involute profile.

INYRODUCTIOX

During the hobbing process the combination hob/gear forms a transmission analogous to that of rack and gear. Module in and presaure angle 0 of thia transmiesion are determined by flank angle 0 and pitch P of the hod (or rack), and since the radfue r_{p} of the pitch circle has been defined as $r_{p}=0.5 \mathrm{~m} \mathrm{~N}$, where m is the module and N is the number of teeth, it resulta from this that the base redius $r_{b}=0.5 \mathrm{~m} \mathrm{~N}$ cos 0 . In the courge of the hobblag process the flank of the hob contacts the gear on the pitch ofrcle, which therefore is the tangent oxrcle of the transmisaion hob/gear. The pitoh(and consequentiy also the module) of the hob is naturally equal to that of
the gear measured along the pitch circle.The involute is, mathematically; determined by the base radius; the number of teeth is a functional datum and because $r_{p}=0.5 \mathrm{~m} N$ this quantity is a constant value, belonging to the gear and being dependent on the hob.

As soon as the gear forms a transmiseion with another gear, the aituation alters.The notation "pressure angle" only holds, when a transmisaion is concerned and the preasure angle of a transmisaion gear $1 / \mathrm{gear} 2$ need not necessarily be equal to that of gear/hob.As it is, we find that

$$
\begin{equation*}
\cos \theta=\frac{r_{b 1}+r_{b 2}}{c} \tag{1}
\end{equation*}
$$

aee fig. 1,80 that the preasure angle δ of a transmisaion sear $1 /$ gear 2 depends on the centre diatance and the base radil, while the pressure angle of the cobination hob/gear is exclusiviy dependent on the flank angle of the rack. In 11g. 1.the gears contact one another in p, the circles that pass through p and the centres of which are O_{1} and O_{2} are the tangent circles, and in the nature of thinge the pitch measured along the tangent circle of gear 1 must be equal to the one measured along the tangent circle of gear 2.Although the pitch circles are often identical with the tangent circles, this is no neoessity, for the pitch cirole radil are exclusively dependent on the invariable dimensions of the hob, where as the tangent circle radil are detarmined by the diatance between the centers of the two gears.

From the above it follows that both module and preasure angle of a tranmiseion may differ from those of a transmiseion hob/gear. Furthermore it is, at least throritically, possible to make a single gear by means of hobs whose pressure angles (flank anglea)are differnt. Since in that event the gears are likewise contacted by the hobs on different circles, the hob modules too,will be differnt from each other. The ratio 1 of
a pair of gears is not only determined by the number of teeth but also by the base radil, the pitoh circle radil do not determine this ratio. In consequence, the basic magnitude of a gear are the base radius and the number of teeth and it is,in principle,imposaible to determine by measuring a gear either the module, the pressure angle or the pltoh circle radius, because of the fact that these magaitudes dopend on one of the hobs With which the gear could have been made.For the purpose of limiting the number of hobs the flank angle pressure angle" and the pitoh (module) of the hob are standerdized.

Owing to this it remains possible to determine the various dimensions of a gear when the base radius is known. The measurements of aame is for this reason essential.

ANALYMICAL INVESTIGATIOX

When an involute acts against a straight line, we have the condition shown in fige. 2 and 3.The straight line,is tangent to the involute curve and is always perpindicular to its line of action. When it is constrained to move only in the direction of the line of action, it will be moved at a uniform rate to that of the end of the generating line.

The gear is fixed upon the rotary table of the Universal Measuring Microscope (Carl Zeise Jena). The gear is centrically positione using double image occular, then this occular will be replaced by the geniometer ocoular while the gear is stili in its centric position. The geniometer occular should be adjusted Bo that its cross hair will be parallel to the $X-Y$ directional measurements of the universal measuring microacope.

A movement along the X-axis and the Y-axis causes the horizontal cross line to contact a tooth flank as shown in Ifg. 2. for instance at A_{1}. from involumetry the vertioal orose line passes through A_{1} must be a tangent to the base circle of the gear. Theoritically, the base radius of the gear r_{b} now equal x_{1}, but

- 40 -

for more accuracy, we shall proceed in a different way, which is being described heringiter.

The rotery table and the gear fixes upon it are turned through an angle θ and once again we cause the horizontal aross line to come in contact with the tooth flank at A_{2}, as shown in fig. 3. this time only by movement in the diraction of the axis of ordination. The basr radiue r_{b} equals arc $A_{1} A_{2}$ divided by angle θ_{1} and arc $A_{1} A_{2}$ equals $J_{2}-y_{1}=y$ in consequence of which:-

$$
\begin{align*}
& r_{b}=\frac{y_{2}-y_{1}}{\theta_{2}}-\frac{y}{\theta_{1}}=\frac{y}{\theta} \\
& y=r_{b} \theta \tag{2}
\end{align*}
$$

The relation between the variation in linear diapacement \bar{J} and angular rotation θ is a atraight iine relation. The limitation of this relation to be a atraight line depends on the involute error exdats. Since y la not only vary due to the rotationel angle θ but also due to the involute profile errors. Applying the above analyeis both the base radius and the error in involute profile can be detected.

EXPERTMETTTAL WORK

The above procedure for measuring the base radius and determIning the involute prifile ecrors is performed on a new ground gear ith a 42 teeth, and a-hobbing Plank angle 20°. Measurements of variation in y dieplacement correaponding to the angular position θ were taken over 12 position for every tooth. The measurements were taken for 8 different teeth.

Results of The Experimental work

Figures (4-19) shows the resulte of the experimental measurementa.The relationa between the displacement y and the argular rotation θ are ilnear, and these are khown in fisires ($4,5,8,9,12,13,16,17$), the involute profile arror for each measured tooth are shown in figures ($6,7,10,11,14,15,18,19$)

Determination of Base Redius

The base radius is determined from equation 2, acoording to the slope of \bar{J} and θ relationgfom the regresaion analyeis these relation can be considered linear with a high confidence limit.

- are by way of example giving the description of a measurement pexformed on the new ground gear with 42 teeth, the measurements were taken upon the first teeth;its results are shown in figures (4,6), the following ordinate values were found:-0.593-0.601-0.605-0.601-0.605-0.605-0.601-0.609-0.601-0.603 $0.599-0.603$ r for $\theta=1^{\circ}$ or 0.017455 rad.

The average value of $x=0,603$ (y Delng the average of 12 readings), Bo the bage radius from equation 2

$$
x_{b}=\frac{0.603}{0.017455}=34.546
$$

$0=20^{\circ}$, we find thet:-

$$
r_{p}=0.5 \mathrm{mII}=\frac{T_{b}}{\cos 20}=\frac{34.546}{0.9397}=36.763 \mathrm{~mm}
$$

$$
r_{p}=36.763=0.5 \mathrm{~m} \mathbb{N}
$$

That is to esy $m=\frac{73.526}{42}=1.7506^{\circ} \mathrm{mm}$

- 45 -

- 46 -

A nomal module is 1.75, starting from this figure we find that

$$
\begin{aligned}
I_{b} & =0.5 \mathrm{~m} \text { II cos } 0 \\
& =0.5 \times 1.75 \times 42 \times 0.9397 \\
& =34.534 \mathrm{~mm}
\end{aligned}
$$

The value calculated is only $0,012 \mathrm{~mm}$ too large, so that the data regarding the gear wheel are in this way very detarminable.

The non linearity in the experimental resulte can be referred to the involute orror exdat on the measured tooth.

The variability shown in the alopes of the measured veluee, indicates variability in the values of the base radius, this variability can be aligned to the eccentrieity in the baee circle, since meacurements are taken referred to intrinsio dstum (gear concentrio) position with reapect to the optical asis of the instrument. By analysing the variability in the base radus value the eocentrioity of base cirole can be detected. The eccentriakty is approximately 15 um.

Accuracy of Determination of Bese Radius

Often in engineering problems the important oxiterion lis a function of several independent raraiablea. In our case bese radius Tb is a funotion of two dirided independent variables ($7 / \theta$). A definition of the ditribution of the resultant function in fermes of the combination of distributions of independent variables 1s known es the "propagation of errors". In our case

$$
\begin{equation*}
s_{x}^{2}-\left(-\frac{s}{u_{\theta}}\right)^{2}+\left(-\frac{u^{2} s_{\theta}}{u_{\theta}^{2}}\right)^{2} \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& S_{r}=\text { resultant atandard deviation of the two variablea } \\
& S_{y}=\text { atandard deviation of } y \text { coordinates } \\
& u_{y}=\text { mean value of } y \text { coordinates } \\
& \mathbf{u}_{\theta}=\text { mean value of angle } \theta \\
& S_{\theta}=\text { atandard deviation of angle } \theta
\end{aligned}
$$

from which it follows

$$
S_{r}^{2}=\frac{1}{u_{\theta}^{2}}\left(s_{y}^{2}+\frac{u_{y}^{2}}{u_{\theta}^{2}} S_{\theta}^{2}\right)
$$

Since S_{y}^{2} is negligible with respect to $\frac{u_{y}^{2} S_{\theta}^{2}}{u_{\theta}^{2}}$, we may oay

$$
\begin{equation*}
S_{r}=-\frac{u_{y} S_{\theta}}{u_{\theta}^{2}} \tag{4}
\end{equation*}
$$

It appears that the precision of the angular measurements is deciaive for the degree of precision with whioh the base radius is found. For the numerlcal example of tooth No. 1 which explained before, the standard deviation $S_{y} \pm 0.003 \mathrm{~mm}$ and let $S_{e} 0.1 \mathrm{~m} \mathrm{rad}$. (approximately $10^{\prime \prime}$). Resultant standard deviation from equation 4

$$
S_{x}=\frac{0.603 \times 0.1}{0.0175^{2}}=20 \mathrm{um}
$$

Detection of Involute Profile

As mentioned before the relation between the diaplecement in tha direction tangent to the base circle y and the angular rotation θ is linear, any non inearity in the expermintal resulta can be
referred to the involute profile exror existed on the measured tooth. For the numerical example of tooth No. 1 which explained before, the mean value of the measured readings was found 0.603 mm, the deviation than that mean is the involute profile error and it was found for that tooth to be equal to 10 um, as shom in fig. 6;and so on for all the teeth.

COXCLUSION

An optical method for measuring the base radius and detecting the arror in the involute profile is introduced. The method provide an accurate determination of base radius and involute error. The besio dimensions of gear oan be dtermined using the measured base radius value. This method is practical, alnce no apecial instruments for gears are necessary to be used and can be applied using any optical metroacope available.

REFERETCES

1. Michalec, G, "Preciation Gearing Theory and practice" John illey, $\frac{1}{n} 970$
2. Dudly, D. " "Gear Hand Book" McGraw Hill, 1970
3. Dew, G.D" The dimenaional accuracy of the projeoted profilea" Microtecnic Vol XXIII No. 5
