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ABSTRACT 
The complex nature for steelmaking processes makes the classical Statistical Process Control 

(SPC) methodologies are optimal when used to monitor and control steam boiler generation used to 
supply the required steam for vacuum degassing processes. These processes include a large number 
of variables that need to be monitored and controlled, while classical SPC requires a control chart for 
each variable. Thus the effect of one variable can be confounded with effects of other correlated 
variables. Such a situation can lead to false alarm signals. Univariate control charts are also difficult 
to manage and analyze because of the large numbers of control charts of each variable. An 
alternative approach is to construct a single multivariate control T2 chart that minimizes the 
occurrence of false process alarms as well as monitors the relationships between the variables, and 
identifies real process changes not detectable using univariate charts. It is necessary to 
simultaneously monitor and control these variables to achieve optimal vacuum degassing process 
performance to remove harmfid gases from the molten steel before casting. This represents the main 
concern of the presented paper. This paper also studies the application of univariate and multivariate 
control charts in the field of steel industry. The performance analysis for each one is studied using 
the Average Run Length (ARL). A comparison of the univariate out-of-control signals based on the 
multivariate out-of-control signals is also made to illustrate the efficiency of the Hotelling's T' 
statistics. 
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1. INTRODUCTION 
In large and complex manufacturing systems, 

statistical methods are used to monitor whether or not 
the processes remain in control. Control charts are 
widely used as process monitoring tools, primarily to 
detect changes in the process mean or in its standard 
deviation which can indicate a deterioration in 
quality. Quality control problems arise when 
processes or products with hvo or more related 
quality variables are to be monitored or controlled. 

When these variables are correlated, a more 
appropriate approach would be required to monitor 
them simultaneously. On-line statistical process 
control is the primary tool traditionally used to 
improve process performance and to reduce variation 
of key parameters. Recently, many businesses use 
Univariate Statistical Process Control (USPC) 
(Montgomery [ l  11) in both their manufacturing and 
service operations. Automated data collection, low- 
cost computation, products and processes designed to 
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facilitate measurement, demands for higher quality, 
lower cost, and increased reliability have accelerated 
the use of USPC. 

However, in many situations the widespread use 
of USPC has caused a backlash as processes are 
frequently adjusted or shutdown when nothiig is 
really wrong because the probability of false 
positives (Type I error) is calculated based on USPC. 
It also takes little or no account of the multiple tests 
that are being performed or the correlation structure 
that may exist in the data. It is very likely that these 
variables will be correlated due to the large number 
of variables collected at a given time. Consequently, 
multivariate statistical methods which provide 
simultaneous scrutiny of several variables are needed 
for monitoring and diagnosis purposes in modem 
manufacturing systems. A more appropriate method 
of detecting and isolating process faults is to utilize 
Multivariate Statistical Process Control (MSPC) 
approaches (Wise and Gallagher [20]; MacGregor 
and Kourti, [lo]). 

A great deal of work on multivariate statistical 
control procedures was performed in the 1930's and 
in the 1940's by Hotelling [ 5 ] ,  who has developed the 
T2 procedure and its extensions to control charts. The 
field took a backstage until the 1960's, when, with 
advances in computer technology, interest in 
multivariate statistical quality control was revived. 
Many of the concepts of multivariate quality control 
techniques are due to Hotelling [5 ] .  Excellent 
discussions of these techniques are presented by Alt 
[I] and Jackson [6]. A number of related papers were 
published in the ensuing years. Jackson [7] 
mentioned in his paper that the multivariate 
techniques should possess three important properties: 
(1) they produce a single answer to the question: is 
the process in-control?, (2) has the specified type I 
error been maintained?, and (3) these techniques 
must take into account the relationship between the 
variables. 

This paper deals with both conventional methods 
and new approaches that can be used to monitor the 
manufacturing processes for the purpose of fault 
detection and diagnosis. The main concern of the 
paper is to improve steel quality using statistical 
process control techniques to improve the 
performance of steam boiler generation, which forms 
an important part of a steel manufacturing process. 
Also, the performance of univariate control charts 
such as Shewhart, EWMA, and CUSUM is compared 
with a multivariate control chart through the Average 
Run Length (ARL). To implement this study, 
Qualstat and Microsoft Excel softwares are used. 

2. UNIVARIATE CONTROL CHARTS 
Statistical Process Control techniques are 

employed to monitor production processes over time 
to detect changes. The basic fundamentals of 
statistical process control and control charting were 
proposed by Walter Shewhart [17] in the 1920's and - 
1930's. The basic Shewhart X- charting for 
monitoring both the mean and - the variance of a 

process, however sensitivity of X - chart to shifts in 
the variance is often considered inadequate. So, it is - 
common to use X - chart coupled with either R chart - - 
or S chart, both of X - R chart or X- S chart are 
used to monitor changes in the mean and the variance 
of the process. Other methods have been proposed to 
improve sensitivity to small and moderate - sized 
shifts in the mean. In particular, run rules have been 
used to signal for unusual patterns on the charf such 
as having eight samples means in a row either all 
above or all below the centerline. Page [14] was the 
fust one who has suggested the use of a separate set 
of control limits, called warning lines, that lie inside 
the ordinary control limits. It was proposed that if 
two consecutive points fell outside the warning lines 
it would be sufficient cause for a signal. This 
additional signal criterion is called a run rule. Run 
rules improve the sensitivity, but also increase the 
number of false alarms ( Champ and Woodall [2] ). 

The statistic EWMA is calculated using: 

The control limits of EWMA control chart are: 

c = p + L ]  (2) 

The tabular CUSUM method is used to represent 
CUSUM control chart for monitoring the process 
mean. The tabular CUSUM works by accumulating 
derivations from the target (p , )  that are above the 

target with one statistic Sh and accumulating 

derivations &om the target ( p a )  that are below target 

with another statistic Si . The statistics Sh and 

S,are called one-sided upper and lower CUSUM, 
respectively. They are computed (Montgomery 1131) 
as follows: 
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0 where the starting values are S; = Sl = 0 .  

In Equations (4) and (6), k is called reference 
value (or the allowance, or the slack value), and it is 
often chosen about halfivay between the target po 

and the out-of-control value of the mean pl that we 

are interested in detecting quickly. 
If the shift is expressed in standard deviation units 

as p1 = p O + S o  0 r ( 6 = ) ~ ~  - p o ) / o ) , t h e n ~ i s  

one-half the magnitude of the shift or 
I 

where Sh and S, accumulate deviations fiom the 

target value &that are greater than K, with both 
quantities reset to zero upon becoming negative. If 
either Shor S, exceed the decision interval H, the 
process is considered to be out-of-control. The 
reasonable value for H is five times the process 
standard deviation0 . 

The performance of SPC charts is typically 
measured in terms of the run length. The run length is 
the number of subgroups £rom a starting subgroup up 
to the subgroup which triggers a signal. The run 
length follows the geometric distribution when 
observations are independently and identically 
distributed ind control limits are assumed to be 
known (Quesenbeny [15]). This performance metric 
is termed the Average Run Length ARLs , where 

6 is the mean shift in standard deviations. So the 
most sensitive charting technique will have a 
short ARL, . A false alarm signal is specified by an 
A&. In addition, it is important to minimize false 
alarm signals, even when the process is properly 
centered. 

Lucas and Saccucci [9] have shown that CUSUM 
and EWMA control charts provide faster detection of 
small step changes than a Shewhart chart without an 
increase in the false-alarm rate. However, previous 
searches have shown that exponentially weighted 
moving average ( E M )  and cumulative-sum 
(CUSUM) charts are better in determining process 
mean shifts than the Shewhart chart. 

In conjunction with the Shewhart chart for 
monitoring the process mean, it is useful to monitor 
the three sigma variability for each subgroup of 
measurements. The three sigma chart provides 
valuable information on the process stability. All of 
these techniques are univariate control charts and 
thus only monitor a single parameter or output at a 
time. Therefore they cannot detect changes in the 
relationship between multiple parameters. 

3. MULTIVARIATE CONTROL CHARTS 
Quality is generally determined by several quality 

characteristics which may be correlated. Multivariate 
control charts take this correlation into account in 
monitoring the mean vector or variance-covariance 
matrix. The first development of a multivariate 
control chart was performed by Hotelling [S]. 
Hotelling's chart uses Hotelling's T2 statistic to 
monitor several quality characteristics 
simultaneously with a specified value o f a  . 

Tracy, Young, and Mason [IS] presented an exact 
method for constsucting a multivariate control cbart 
for use when individual observations are collected in 
the start-up stage of the process. Hawkiis [4] stated 
that large values of T~ can also be caused by changes 
in the covariance matrix and not just by changes in 
the mean vector. He proposed that it is important to 
base the constructed control limits on accurate 
estimates of the parameters. During the start-up 
stage, when using subgroups consisting of individual 
observations (i.e., subgroups of size 1) with 
measurement variables, the beta distribution should 
be utilized to obtain control limits for the T2 statistic. 
Use of the exact distribution is better than employing 
approximate F and chi-square distribute ions, 
especially when the number of subgroups is small. If 
the size of the historical sample is large, it is 

- - 
common to assume that estimates (Xand  S) are 
equal to the true population parameters p and x. 
However, as noted by Tracy, Young, and Mason 
[IS], that assumption is not necessary in multivariate 
charting. 

Alt [I] proposed that when the population 
covariance matix is known, Hotelling's statistic is 

equivalent to the zZ statistic 

Also, when p = po , there is probability a that this 
2 

statistic exceeds a critical point of x., , @ is the 

number of variables) so that the overall error rate can 
be maintained exactly at the level a by triggering a 
warning only when 
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Lowry and Montgomery [8] discussed the out-of- 
control signals in multivariate control charts and 
proposed that the performance of multivariate control 
charts in detecting process disturbances tends to 
deteriorate as the number of monitored quality 
characteristics increases. Hawkins [3], as well as 
Wade and Woodall [19], uses regression adjustments 
for individual variables to improve the diagnostic 
power of multivariate charts. 

The process being monitored with the Historical 
Data Set (HDS) is being available and the parameters 
of the underlying multivariate normal distribution are 
unknown and must be estimated. The TZ value 
associated with Xis given by 

- 
where X and's are the common estimators of the 
mean vector and covariance matrix obtained from an 
in-control historical data set. 

In case of phase I1 setting for individual, the 73 
statistic in (9) follows F distribution and the UCL is 
computed as 

where n is the size of the HDS, p is the number of 
variables, and F,:,,,_,) is the a th quantile of 

In the saine time, the data of monitoring Phase I1 
is used to construct 73 control chart as subgroup m 
using the equations for the value of T~ and UCL in 
equations (1 1) and (l2), respectively. 

2 - -  G ' -I -. T. = ( X i - X ) S  (XI-X) 
J (1 1) 

4. STEELMAKING PROCESSES 
The process of producing special steel contains 

four main processes. The f a t  process is melting in 
Electric Arc Furnace (EAF), where scrap and ferro 
alloys (raw materials) are added to melt by 
generating the arc in (EAF), and adjusting the 
required chemical composition by adding ferro 
alloys. The second process is the secondary Ladle 
Refming Process (LRF) to adjust the required 
chemical composition of special steel and to get high 

cleanlmess degree through desulphurization. In fact, 
the secondary refming process is considered as the 
last chance for the steelmaker to improve the quality 
of producing special steel before casting. 

The thud process is Vacuum Degassing (VD) to 
remove harmful gases such as Nitrogen (N2) and 
Hydrogen (Hz) from molten steel by stirring it under 
the vacuum condition. The vacuum process condition 
is achieved using steam generated by a boiler with a 
capacity of 4 t o n h  of steam. This steam is used as a 
power to operate a number of pumps to generate 
vacuum conditions inside the container of VD 
process. The vacuum pressure reaches to less than 1 
mbar to suck the harmful gases out of the molten 
steel in about 15 min. The last process is to cast the 
molten steel in ingot casting or billet casting using 
Continuous Casting Machine (CCM). 

5. AN APPLICATION STUDY 
The present application study is carried out in an' 

Egyptian 'steel industry (ARC0 Steel, Sadat City, 
Minonfiya) on the boiler of steam generation process 
shown in Fig. 1. This process begins by feeding 
natural gases as a fuel mixed with air in the 
combustion chamber for boiling the water @put to 
boiler from deaerator which eliminates oxygen from 
the water) to convert it to steam with high pressure. 
The high-pressure steam is passed into two passes, 
namely; steam accumulator and super heater to 
increase the temperature of steam. The steam is 
passing to steam header to the vacuum degassing 
process. To increase the boiler efficiency and 
performance, it has some equipment such as (Rashed 
I161 ): 

- Deaerator is used to remove oxygen from the 
feed water to the boiler. It has a lime of steam to 
increase the temperature of feed water to boiler 
through pressure regulator. 

- Economizer is used as a heat exchanger to 
transfer the temperature of fume gases i?om the 
boiler to the feed water from the deaerator to increase 
the boiler efficiency. 

The overall process is controlled by monitoimg 
seven quality variables of boiler, namely; water level 
(W1 %), water input temperature from economizer 
(Tbwi), fume gases temperature (Tg& boiler pressure 
(Pb), accumulator pressure (PJ, steam header 
pressure (Ph), and steam header temperature (Th). 

In fact, there is a difficulty to reach a vacuum 
pressure less than 1 mbar that is required to remove 
the harmful gases. This represents a large problem. 
Practically, this takes a long time (more than 20 min). 

To overcome this problem, initial data about the 
seven quality variables are collected to construct 

188 Engineering Research Journal, Minoufiya University, Vo1.28, No.2, April 2005 



M A. Sharaf El-Din, H. I. Rushed, and M. M. El-Khabeery ,"Statistical Process Control Charts ... " 

Phase I of control charts. 125 measurements were first collected then were grouped into 25 subgroups. 

Tahle 1 Averaees and ranees of subgroups 

Table 2 Significant linear correlations 

*Coefficient of correlation 

Also, in Phase I .  (monitoring phase), 155 
measurements were collected into 31 subgroups as 
shown in Table 1. 

The significant linear correlations (greater than 
0.35) are summarized in Table 2. 

6. RESULTS AND DISCUSSIONS 
Initially, the collected data must be filtered to 

obtain a preliminary data set from which the 
Historical Data Set can be constructed. A preliminary 
data set should be thoroughly examined using 
procedures and graphical tools. A graph of the 
individual variables over specified period of time is 
presented in Figs. 2-a to 2-g for the seven quality 
variables, which indicate some pattern. Fig. 2-a 
indicates that the water level W1% is initially stable, 
while in Fig. 2-b the boiler water input Tbwi is 
increased with time. The figures of other variables 
are indicating that they are slightly stable with time. 
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6.1. Shewhart Control Charts . 
Figures 3 to 9 show the seven Shewhart control 

charts for the subgroup of the boiler variables. In Fig. 
3, X bar and R control charts of WI % are 
constructed. It is clear that there is indication that X 
bar and R charts are in-control, whereas the variable 
Tbwi is unstable as shown in Figs. 4 and 5. The Tb, 
and Tgb control charts have three zones A, B, and C. 
In zone A, the process is started with out-of-control 
case. The investigation of this zone indicates that at 
subgroup No. 3 (Fig. 4) the servo-motor, which is 
responsible of controlling the flow of natural gases 
used as a fuel in boiler, is improperly. The servo- 
motor is temporarily repaired until ordering new one 
at subgroup No. 9. At this subgroup in Fig. 5, Tgb is 
decreased due to increasing both of boiler load and 
water level (W1 %). At the same time, the pressure 
regulator is manually opened, consequently the steam 
flow is increased to deaerator at zone A. This leads to 
an increase in boiler water input temperature Tad. In 
zone B, there is no indication for out-of-control 
signals until subgroup No. 15. Also, in zone C the 
trend of the boiler water temperature T~ is gradually 
increased the UCL. 

After investigation, it has been found that as the 
result of increasing the steam consumption in VD 
process, due 
to the leakage in the seal of the container of VD 
process, the boiler operator opens the pressure 
regulator manually to increase the quantity of steam 
flow to the deaerator to improve the boiler efficiency. 

As shown in Fig. 6 for 6oiler pressure Pb, out-of- 
control signals in subgroups No.l8,19,26 and29 are 
detected due to increasing the steam consumption in 
VD process and consequently Pb is decreased.. On 
the other hand, accumulator pressure Pa,- steam 
header pressure Ph, and steam header temperature Th 
in Figs. 7, 8 and 9, respectively, out-of-control 
signals are noted in subgroups 3, 18, 19, 26, and 29. 
A failure is found in servomotor at subgroup No. 3 
and consequently the air to fuel ratio is uncontrolled. 

Some corrective actions were taken as a result of 
detecting the out-of-control signals during the 
monitoring phase (Phase D) including: 

Install new servo-motor for controlling the 
Airmuel ratio, 

0 Initiate detailed work instruction for boiler 
process, 

0 Prevent leakage in VD container, 
Install water level measure with signal at 
specified level of the accumulator, and 
Repair the pressure regulator. 

After carrying out these corrective actions, 24 
subgroups were collected for each variable and hence 
X bar and R charts could he constructed. In this case, 

no indication of out-of-control signals is found, the 
performance of VD process becomes stable, and a 
1 mbar or less could be reached through the required 
time. 

6.2. EWMA Control Charts 
Practically, weighting parameter having a= 0.1, 

the width of the control limits L = 2.7, and zo equals - 
to the grand mean X of the variable, were chosen 
and consequently EWMA is constructed for the 3 1 
subgroups with each of size five. 

The EWMA control chart of the water level 
WI % shown in Fig. 10, indicates out-of-control 
signals at subgroups Nos. 13, 14, 15, and 16. On the 
other hand, EWMA of the boiler water input 
temperature Tb, indicates that Tbwi is unstable as 
shown.in Fig. 11. The subgroups Nos. 5,6,7,8 
and 9 are out of UCL. There is also a gradual 
decrease at subgroup No. 7 until subgroup No. 15. 
This leads to subgroups Nos. 13, 14, 15, 16 and 17 
are out LCL. On the contrary, the EWMA of gas 
boiler temperature Tgb in Fig. 12 indicates a gradual 
increase in the mean. The EWMA of boiler pressure 
Pb, accumulator pressure P, and steam header 
temperature T,, are in control conditions as shown in 
Figs. 13, 14, and 16, respectively. Finally, EWMA of 
steam header pressure Ph has out-of-control signal at 
subgroup No.1 as shown in Fig. 15. 

6.3. CUSUM Control Charts 
S, and S, of each variable were calculated for 

the 31 subgroups with each of size five. There is no 
indication of out-of-control signals for steam header 
pressure Ph. On the contrary, there are out-of-control 
signals of the variables water level W1 %, boiler 
water input temperature Tbwi, gas temperature Tgb, 
boiler pressure Pb, accumulator pressure P,, and 
steam header temperature Th. 

6.4. Multivariate T' Control Charts 
Calculations of Hotelling T' statistic require an 

estimate of the mean and covariance matrices after 
obtaining the historical data set for all the seven 
variables. 125 measurements are chosen as a Phase I. 
The procedure was to construct the Hotelling 
statistic as 155 measurements as individuals T' and 
31 subgrou s with five measurements for each as B subgroup T for Phase I1 (monitoring phase). 

Figures 17 and 18 show 73 charts for individuals 
and subgroups respectively. In fact, T2 chart for 
individuals has out-of-control signals at 
measurements numbers 14, 15,21,70,76, 86,87,90, 
92, 93, 94, 117, 129, 130, 133, 139, 141, 143, and 
144. On the other hand, the subgroup numbers 1, 8, 
11, 13 and 15 are out-of-control at TZ chart for 
subgroups. 
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7. PERFORMANCE COMPARISON 
In case of Shewhart control chirt with three sigma 

limits, the probability that the measurement exceeds 
its control limits is 1lARL.o (11370 or 0.0027). The 
probability that the process is withim the 3 sigma 
limits is simply (1 - l/ARLo) or 0.9973. In general, 
for a process consisting o f p  statistically independent 
parameters being monitored, the probability that allp 
parameters can be plotted in 3 sigma control limits 
when they are in control (Montgomery [I21 ), i.e. 

P{allp means plot in control)= (0.9973)P (13) 

In the case of seven variables ( p  = 7),  the 
detection probability is reduced from 0.9973 to 
0.9813. This means that ARLO of seven variables 
have been reduced from 370 (single uncorrelated 
univariate chart) to 54. It is important to note that 
equation (13) assumes that seven variables are 
statistically independent. It is more typical that the 
variables are partially dependent which could 
produce an even smaller ARLO = 54. 

For monitoring and control of the steam 
generation process, it is helpful to compare these 
separate techniques for determining out-of-control 
signals. At the beginning, the total number of out-of- 
control signals generated by the seven univariate 
control charts in phase I1 were counted. Secondly, 
counting the out-of-control signals is indicated using 
a single multivariate control chart based on Hotelling 
T' statistic with individuals and subgroups. 

7.1. Performance Comparison of Univariate 
Control Charts 

Table 3 gives the out-of-control signals of 
univariate control charts that were detected from the 
31 subgroups of the studied different variables. Also, 
it shows the.number of out-of-control signals of each 
variable for Shewhart, EWMA, and CUSUM control 
charts. As shown in Fig. 19, out-of-control signals 
detected by Shewhart control chart are higher than 
both EWMA and CUSUM in all variables. This does 
not mean that Shewhart has better performance than 
EWMA and CUSUM. In fact, Shewhart control chart 
has high false alarms signals than EWMA and 
CUSUM. Consequently, it is believed that Shewhart 
control chart generates the highest incidence of false 
alarm signals and do not provide a clear indication of 
the known or assignable process shifts. The out-of- 
control signals of both EWMA and CUSUM control 
charts are slightly the same. 

The performance comparison of EWMA and 
Shewhart is clear in Fig. 20. The ARL. of two 
EWMA's have been presented for comparison. 

Keeping in mind that the smaller the out-of- 
control ARL for a control chart the better it is, Fig. 
20 shows that EWMA is more effective for small 

shifts, but less or equally effective as the Shewhart 
control chart for bigger shifts. That is the EWMA 
importance as far as monitoring is concerned. When 
small shifts detection is desired EWMA is the best 
choice. 

Table 3 Detected out-of-control signals 

7.2. ~erfdrmance Comparison of Multivariate 
Control Charts 

7.2.1. Comparison of TZ with Individuals and 
Subgroups 

It is he1 ful to compare the two separate P .  techniques (T w~th  Individuals and Subgroups) for 
determining out-of-control signals. In Fig. 20, 
number of out-of-control signals with subgroups 
equals 26 signals, while at ? with Individuals equals 
10 signals. Subgroups number 3, 5, 14, 16, 18, 19, 
24, 26, 27, and 29 are totally signaled in both cases, 
but the other 16 subgroups are not signaled at T* with 
individuals. It is clear that the T2 with subgroups bas 
higher performance than individuals. 

7.2.2. Comparison of Subgroup and Shewhart 
Control Charts 

The number of out-of-control signals of Shewhart 
control chart for each variable are summed for each 
subgroup. Figure 22 Shows that the number of out- 
of-control signals detected by Shewhart and T~ 
control charts are 61 and 26, respectively. It is 
noticed that five subgroups are signaled by the 
Shewhart control chart and not detected by T' chart, 
and only one subgroup (No.15) is not signaled by 
two different charts. 

8. CONCLUSIONS 
In this paper, the process of steam generation 

boiler, in steelmaking, was monitored using 
conventional univariate control charts (Shewhart, 
EWMA, and CUSUM) and a single multivariate 
control chart. Seven variables of boiler water level 
W1 %, boiler water input temperature Tbwi, fume 
gases temperature Tgb, accumulator pressure Pa, 
steam header pressure Ph, and steam header 
temperature Tb were monitored. Based on these seven 
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I univariate control charts, a high frequency of out-of- 
control signals was generated. Consequently, the 
ability to clearly identify process shifts of the boiler 
was ambiguous. Close examination of the seven 
variables showed several cross-correlations. 

There are situations in which an out-of-conml 
signal goes undetected using EWMA charts, whereas 
it is detected when Shewhart charts are used. An 
explanation is that if the process change is a 
temporary shift that affects only one point, then we 
would expect the Shewhart chart to do better at 
detecting this shift. If the process is going through 
sustained small changes, then we would expect 
EWMA chart to do better. 

Based on the multivariate Hotelling's statistic 
control chart, the frequency of false alarm signals 
was reduced. The technique also demonstrated the 
ability to detect process shifts. This single 
multivariate chart is also simpler to manage and 
interpret as compared to the seven individual 
univariate charts. 

Out-of-control signals based on Hotellmg's 
statistic show the least occurrence of false signals. 
It is also interesting that all Shewhart signals are 
included in the Hotelling's with subgroups chart. 
This illustrates the efficiency of a single multivariate 
chart for monitoring the entire set of boiler variables. 

Finally, corrective actions are made to overcome 
some problems of steelmaking process, and a 
significant improvement is attaineded. The used 
control charts reflect this result. After carrying out 
these corrective actions, 24 subgroups were collected 
for each variable and hence X bar and R charts could 
be constructed. In this case, no indication of qut-of- 
control signals is found, the performance of VD 
process becomes stable, and a 1 mbar or fess could 
be reached through the required time. 
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Fig. 1 Schematic diagram of boiler steam generation. 
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Fig. 2 Time sequence plots of the seven variables. 
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Fig. 3 X bar-R charts WI % by subgroup -monitoring Phase. 
UCLx = 64.18, CLx = 61.46, LCLx = 58.75; 

UCLr =9.96, CLr = 4.72, LCLr = 0.0 

Pb by The 
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Fig. 4 X bar-R charts Tbwi by subgroup -monitoring Phase. 
UCLx = 11 1.75, CLx = 104.98, LCLx = 97.21; 

UCLr = 24.82, CLr = 11.76, LCLr = 0.0 

Svbgroup No. I 

I Subgroup No. I 
Fig. 5 X bar-R charts Teb bv subaoup -monitoring Phase. 
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Fig. 6 X bar-R charts Pb by subgroup.-monitoring Phase. 
UCLx = 23.88, CLx = 21.58, LCLx = 19.29; 

UCLr = 8.42, CLr = 3.99, LCLr = 0.0 
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-*ST.. I 
Fig. 7 X bar-R charts Pa by subgroup -monitoring Phase. 

UCLx= 21.15, CLx= 18.27, LCLx = 19.39; 
UCLr = 8.42, CLr = 3.99, LCLr=0.0 
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Fig. 8 X bar-R charts Ph by subgroup -monitoring Phase 
UCLx = 14.70, CLx = 14.27, LCLx = 13.83; 

UCLr = 1.6, CLr = 0.76, LCLr = 0.0 

SubgmupNo. 

Fig 9 X bar-R charts Th by subgroup - monitoring Phase. 
UCLx = 265.63, CLx = 259.88, LCLx = 254.12; 

UCLr = 11.13, CLr= 5.27, LCLr = 0.0 
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Fig. 10 E W  chart of WI% for subgroups. 
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Fig. 11 EWMA chart of Tbd for subg~oups. 
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Fig. 12 EWMA chart of T& for subgroups. 
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Fig. 13 EWMA chart of Pb for subgroups. 
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Fig. 14 EWMA chart of P. for subgroups. 
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Fig. 15 EWMA chart of Ph for subgroups. 
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Fig. 16 EWMA chart of Th for subgroups. 
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Fig. 17'73 Control chart with individuals for monitoring Phase (Phase 11). 
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Fig. 18 73 Control chart with subgroups for monitoring Phase (Phase 11). 
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Fig. 19 Out-of-control signals comparison of 
Shewhart, EWMA, and CUSUM for all variables. 

Fig. 20 ARL comparison of Shewhart and EWMA schemes. 

--A-Subgroups (T2) 4 Individuals (T2) 

SubgroupNumber 

Fig. 21 Comparison of out-of-control signals generated of T' 
with individuals and subgroups. 

1 Suberouo Number 

Fig. 22 Comparison of out-of-control signal generated of T2 
and Shewhart control charts with subgroups. 
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