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ABSTRACT :

AP

The paper investigates the role of Herisenm lemgth'N’ 1a
tuning the dynamical behaviour of discrete tims sysiems. Tha
paper introdwses ,ss well, s new mothed for solvimg the receding
horisen matrix differential equation, which aviods solution of
linear matrix eguation uawslly enceuntered. in effisieat fast
and rigid algorithm is develsped which ie wsll suited for on-
line comtrol ugimg micro~precessore.

INTRODUCTION 5

Many recent puplications have coneidered application of
sedera control theory in the cemtimuous or discrete dats forma
to impreve and/or optimiss the performance of dymamieal systems,
However, ilmproved selution mstheds are usually mesdsd for on-

lize comtrol using micro-procesesors.

Uns of the modern deosign techniques that hes found pra-
otical application is the infinite time regulantor preblea’l),
The techaniqus aseumes that the resultant cloesd-loep system is
stable and poseesses certaln desirable danping charasteristics
so that the praciical performance of the system will be satisfa~
ctory. T™his teclhniqus ocan be interpreted ss ths mimimisetion of
the cost Tumotional
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subject to the system squation
2(141)= A& x(1) + B w(i) (2)

where x¢R® , ugR® , 4 €RP™®, and B&RE™ are system matrices,
" implies transpose, 3 ER™® and RER P'™ gre positive osnie
difinits ard pesitive difimite symmetric matrices,respeotivsly,
N 18 the number of samples. Complets controllability is esaen-
tial for the resultant feedback sigmals to bs effective.The
optimal oentrol law ie given by

u()= ==Y 3" A )" p(1)~a) (3)
whers, - ’ ol -

Pi)e Q + A P(4+1) [ I + B R™' P(4+1)]7" 4 (4)
with P(¥)s=0 (5)

This rscursive relstion renders cemstant feedbsck gmims as
B 00(2'” -

Pollewing the abeve prcosdure two difficulties arise:
(1) the matrix Q which is a function of system matrices must
be oomputed. Different techniques are available for the
caleulstion of the matrix q{#*3) however, the methodology
itsel?f is time consuming which might pose soms limitation
for on-line purposegs).
(2) The solution of eguation (4) ip another time comsuming

process.

Heocant devalopment have shown that a finite time interve
8l (in contrust with the infinite time interval) can be used to
caloulate stabls feadback geins .This strong findimg tegether
with the recedimg horizon notion(ﬂ,preunt a powerful method
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for calculating stebilizing feedbeck gains.

The paper adapts the rescedimg horison notion to devise a
new technigue for optimal stabilisstion of discrete data sysiems,
The asymptotic bahaviour of the olosede~loop system under study
is exsmined using this suggested slgorithm.

DEVELOPMENT OF THE SOLUTIQN MBTHOD:
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Given the discrete linesar system described by equation(2).
It 15 desired to find the control sequence

W(OY,ul1) pneerns viveensoneosat(lml) {6)
that minimizes the medified cost functional
I.a % W) B wy) (N
e 420 :
subject t0 systsm s equation (2) and the boundary constraint
2(H)= O (8)

where R€ R™'P positive dsfinits matrix to be specified and N is
the borizon leagth, The control law for this oase can be easily
found to be
u(1) =-k~1 B (W) 4 x(1) Nyna1 (9)
where M{N) cen be vbtaimed fm('”;
M(1+1) = AT M) W)+ 3R B
M(Q) = O

[

{(10)
Eguatien (10) :u be solved by succassive substitutionm so that
- ’ »
ME) = = atppte )yt (11)
1=0
Kow, the problem is redugsd to the selection of partioular

valus for N such thai e desired eigen~values pattsrn and conseq-
uwently a specific response for tha olossd-loop system ia obtained,

In the canventiomal rsgulator problem, the matrix Q enables
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the desiguer to locate the closed-loop poles in thas prescribed
postion ,he desires,inside the unit circle. In receding horison
method the matrix Q is absent. However,the matrix M™'(N) will
affect directly the feedback law of equation (9). Cosequently,
the horigzon time § is directly affecting the solutienm,

Kleinnan(3) and Ko-n(T) bave shown that the number of
samples N should be NE {n+), oo],where n iz the dimension of the
ayetem, In classical design procedure the choice of Nen+1 res-
ults in a very costly gains (as these gains are large). Conver-
»ly as § grows the convergence properties of the algorithm are
impaiyred. A propexr upper limit for N is one of the objective
pointe in this study.

ALGORTTHM ;

Given the continuous time system

1‘1QA111+BLL1 (12)
which is to be contrvlled using & micro-processdor ss shown in
figure (1) , 1f a sampling period 1is chosenzsroperly thexn

Ab 1:8+8 A (1A +A -
x, ((347).4) = o x,(18)+ By uy(14)ay

e
A0 in” 2 W)
=8 x,(ia)+ ge ad By u,(1A)4§ (13)

where the variable of integration is repleced by
8« 1A+A-T
The equivelent discrete system for the system dsscribed
by equatiom (13) is given by equation (2). The sampling period
xuat satisfy the inequality

A LV2]Re (R,
for good reproduction of aignals(1).
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where )inz is the maximum eigen-valus of the aystem matrix Ayo
The aolution algorithm oan be gummerized ae follews.
Step 1: Set R= I, A =1/2 [Ro( }lm)l, h (step Bige)=(0,1 lno(km)l

E= n+1
Step 2: Computs the matrices A and B as follows

sesd , Ba(Z 83

1=0
where
Se(1- §as %;2Y%I+§;w%12)

and
J= &/ h

{ ooneult Ref. (8) far further deteils)
Step 3: Cempute

N-1 ’ F3
M(E) = = A=t B -t 8 (a" )t
1=0

K =R" B MV (N
{ eomsult flow chart Figure(2))

Step 4: Set N = N+1 and repeat the process until|lkﬂ2 .(f%-xij )1/2

resches s constant value,

NUMERICAL EXAMPLE:

Data for a continuous time ayatam which reprssents & line-

arized power system model, ls given us;

0. 1. 0. 0. 0

-22.5 0. <4T.4 O. 0

M¥ | o.o86 0. —.195 L129] ' 17| o
1 85.7 0. =822, =20, | 1000. |

The eigsn-valuse of the mairix A, are
+0025: 14096
=10,4% 3.3

Y
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The sampling period i1ie givem by
=1/2|Re aax| =0,048 mec.
The equivalent discrete system is calculated apnd is found to be.

[(.998  -.009 ~,002 O ] o0 ]
+216 .998  .454 O 0.001

A 001 0 ,996 =001 A -.006
[ -.9 .004  B.687 1.2 | 110,677,

The open—loop poles are
1.04 2 30.04
0.99 and 1.12 indicates initially unetable aystem,
The atate feedback gaine are

K=[ 0.3 0.06 0,5 «0,06] st ¥ = 220
The eloaed-loop poleg are foumnd to be
0.94 £ 3 0,04
0.89
0.97
Observe that only the unstable polem are shifted.
The eigen-value loci ae well &s the varation ofl|K||ae ¥
chenges are shown in figure(3) for Né [n+! , 25n ) ,where n is
the order of the matrix A.

DISCUSSION AND OBSERVATION:

2. e QAN AW el AR S O S T S W iy Wi G W Y W G T S g

(1) The control energy Kl is monotonically decreasing fumction
of the horizon length N that i»
i- A8 B0 [|E]|+ o0
11-A8 Hee | K|[>constant

(2) For small values of B , the closed-loop poles are forced

deeply towerdes the origin of the unit circle with large
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imaginary parts indlcating fast responuse but the wmargin of
ths transient behavicar is elightly improved.

(3) As N incressss ,the margin of the transient reeponse is i
proved { sse figure (3)).

{4) As N increased the closed-loop poles move towsrds the circ-
umference of the unit circle with reduction in {their iwmagi-
nary parts.Por N ae large as 25n ,the gain K approachess
its constant wvalue indicating that no more elgen~valuss mo-
vements can be acthieved and the process terminated. It is
initereating to note that the etable open=lo0op poles hold
thedw original locations whils the unstable poles assume
now location inmide the stable region of the Zeplasme,

CORCLUSICH:

R A D 0 WA G W et

The receding horizen technique is applied suscesefully to
the design of discrete data systemsa. Light is focused on the rel-
ation between control energy wvariation and eigen~valuses distribu-
tiom and the herizen length since, the state welghting matrix Q
ie abgent. It is caoncluded that the horisen length § can be used,
to play the role of Q ,tc tune the response of the ¢clossde«loop
systen while cffering a dramatic computational advantages over the
cenventional regulator problem. The technigque is suitable for on-
line applications,
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FIGURE (1) SAMPLED DATA CONTROL SYSTEM
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Fig.(2) Design of The Receding Horizon Controller

For Discrete Time Systems
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