Menofia University
Faculty of Engineering Shebien El-kom Basic Engineering Science Dep.
Post Graduate Examination, 2015-2016
Date of Exam: 04/06/2016

Subject: Introduction to Ordinary Differential Equations Code: BES 506
Time Allowed : 3 hrs
Total Marks: 100 Marks

Answer all the following questions

الوتحان فـي صفحتّان

Question 1 [25 Marks]

(A) Find the particular solution of the first order first degree ordinary differential equation:

$$
\left(y^{2}+2\right) \frac{d y}{d x}=5 y \quad \text { given that } y=1 \text { when } x=\frac{1}{2}
$$

(B) Find the particular solution of the first order first degree ordinary differential equation:

$$
\begin{gathered}
7 x(x-y) d y=2\left(x^{2}+6 x y-5 y^{2}\right) d x \\
\text { given that } x=1 \text { when } y=0
\end{gathered}
$$

(C) Find the general solution of the first order first degree ordinary differential equation:

$$
(x-2) \frac{d y}{d x}+\frac{3(x-1)}{(x+1)} y=0
$$

Question 2 [25 Marks]

(A) Explain all cases of the integrating factor to reduce the first order first degree ordinary differential equation to an exact equation. Solve this equation as an example

$$
\left(y+x y^{2}\right) d x-x d y=0
$$

(B) Find the general solution of the first order but not of first degree ordinary differential equations:

$$
1-\left(\frac{d y}{d x}\right)^{2}-e^{2 x} \frac{d y}{d x}=0 \quad 2-y\left(\frac{d y}{d x}\right)^{2}-2 x \frac{d y}{d x}+y=0
$$

(C) Find the general solution of the second order first degree ordinary differential equations:

$$
1-x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=0 \quad 2-y \frac{d^{2} y}{d x^{2}}+1=\left(\frac{d y}{d x}\right)^{2}
$$

Question 3 [25 Marks]

(A) Prove that if $y_{1}=e^{x}, y_{2}=x e^{x}$, and $y_{3}=e^{3 x}$ are linearly independent functions. Discus completely all the difference between the general solution and particular solution of an ordinary differential equation. Find the homogeneous differential equation which the complement solution is :

$$
y_{c}=c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3} \text { where } c_{1}, c_{2} \text {, and } c_{3} \text { are constants. }
$$

(B) Find the general solution of the non-homogenous system of differential equations:

$$
\frac{d^{2} x}{d t^{2}}-y=e^{2 t}+5 \quad \text { and } \quad \frac{d y}{d t}-x=\sin (2 t)
$$

(C) Find the total solution of the following non-homogenous differential equation by the linear differential operator method

$$
\frac{d^{4} x}{d t^{4}}-x=\cos ^{2}(t)
$$

Question 4 〔 25 Marks

(A) Find the total solution of the following non-homogenous differential equation by the undetermined coefficients method.

$$
\frac{d^{4} x}{d t^{4}}-16 x=e^{5 t}+\sin (2 t)
$$

(B) Find the total solution of the following non-homogenous differential equation by the undetermined coefficients method.

$$
[(D)(D-1)(D-2)] x=t^{3}+e^{2 x}, D=\frac{d}{d t}
$$

(C) Show that the power series solution of the differential equation: $(x+1) \frac{d^{2} y}{d x^{2}}+(x-1) \frac{d y}{d x}-2 y=0$, using the Leibniz-Maclaurin method is given by : $y=1+x^{2}+e^{x}$, given the boundary conditions that at $\mathrm{x}=0, \mathrm{y}=\frac{\mathrm{dy}}{\mathrm{dx}}=1$.

