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A SUGGESTED SOLUTION FOR TORSION PROBLEM
OF HOMOGENEOUS PRISMATIC BAR
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ABSTRACT

Non-metallic matenials are being used increasingly as engineering materials in a wide
range of applications. This work introduces a numerical solution for pure torsion
equation of a continuousty homogeneous prismatic bar, which is cut longitudinally
from a hollow cylinder. having a material with rectilinear arasotropy and a circular
sector cross section. The lateral surface of the prism is free from external forces, and
from all cestraints. Body forces are absent, and the ends are subjected to dismbuted
forces, which are leading to twising momeats of opposite directions. Ouly two stress
components are different from zero, and the remaining four vanish. The problem is
constructed using a small physical parameter, which characterizes the matenal
anusotropy. A mathematical mode!l is denved using Fourier senes analysis, and the
stress components are obtained as conversion expansions. Computer program is
designed. and illustrative examples for orthotropic and non-orthotropic materials are
introduced for showing the effectiveness of the suggested solution. Acceptable
numerical results are obtained, and convergence is discussed.
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1- INTRODUCTION

In modem industry, there are many kinds of amsotropic materials which are natural
like wood or synthenc like polymers, glass-fiber. or remnforced plastic. This non-
metallic materials are better than metallic materials in different practical applicatons
as aircraft construction, and medical instruments. This work introduces a numencal
solution for pure torsion problem of homogeneous, anisotropic prismatic bar. The
theory of generalized torsion was first worked out by Voigt, and the rigorous theory of
pure torsion was developed by Saint-Venant. There are several works on the theory of
pure torsion, and among these are large monograph mentioned by Lekhmutskii (11,
Timoshinko [2] , and Sarkisyan [3].

Here. a pure torsion problem is staied and solved for a rod having curvilinear
quadrangle cross secton , while its matenal is linearly amisotropic .

2- STATEMENT OF THE PROBLEM
Consider the continuously homogeneous pnsmatic bar, which is cut from a hollow
cylinder having inner radius (2) and outer radius (b), the prism's cross section is a
circular sector having angle (). The ongn of coordinates is at the center of the edge
cross section which lies at XY plane, and Z axis comncides with the axis of the hollow
cvlinder. The cylinder’s matenal has rectilinear anisotropy and the planes of the cross
sections are planes of elastic symumetry. The forces being distabuted over the ends are
reduced at either of them to a twisting moment M, . Four stress components out of six
are zer08 © o =06, =0, =1, =0 , and the others are related to the stress function
w(x,y) as
ow(x,y)
ax

where 6,0, and o, are the nonmal stress componeats and t_,t, and t,, are the
tangent stress components. The stress funcnon w(x.y) satisfies the second-order
partial differential equation

1 2 2
?3;:’ -2a,, :x:y Ty ‘;’T =-29 (2)
where a,,,a,, and a,, are coefficients of elasticity and 91s the angle of twist per unit
tength [1] . The torsion nigidity C, is given by:

ouxy)

tL(xy)= 3 , an TL(xy) =~ (1)

1,
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C, =—;-j} wix.y).dx.dy (3)
The stress funcnion w(x,y) vanishes on the contour of the cross section

w{xlyjicmu = 0 (4)
3- A SUGGESTED SOLUTION TECHNIQUE
Equanon (2) is transformed from Cartesian coordinates into polar coordinates 2]
where w(x.y) = ¢(r,8) as follows: |

T(6(r,0)] +8.5{6(r,8)] = -4, (3)
where T[ | and S{ ] are two differential operators,

g 18 13
= —— b —— d
M+ iatia ™
e 18 18 d,1a
S{ I= 31(9)(5;;-;E-Fag;)“hz(e)g(;ag) :

a,(8) = cos(20) ~ K, 5in(20), and 2,(8) = sin(20) + K, cos(20)
where & is a small physical parameter which 1s always less than umty [3,4]

5=2u"%s  gg§<), K, = 2 and A, = A
a,, +a, 3, —ay 3, tag
and the stress components, and tocsion ngidity are given as:
iy 90(r,8)  cos(B) 3 %
1, (r,8) = sin{8) o + oG ! (6-a)
T,-z(-l',a) g “CQS(B) 0’3’(5-9) + Slﬂ(_e) %(I,B) i and (6_b')
or r or
C, = = I #(z,0).tdr.do ' (6-¢)
9 domam
Solution of equation (5) is assumed in the form (5,6]
§(r,6) = n(d(£,0) +8.4,(1,0) +87 ,(r,8)+..........) =7 nf;._‘ 8.9,(r,9) (7
0123

Substituting from equation (7) into equation (5) and equating coefficients of &,
(j=0,1,2,... } we obtawn the differential equanons

T{én]=:%"—=fa ; (8)

T, ]=-8[¢,) = £(c.8), )

M6, )= -[6,]= 27,8 (10)
in general, T{q;,] = -S[¢ H] =f(r.8) and f,= ___‘:.0_

The boundary conditions in equation (4) wall be
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$,(2,0) =$,(b,8)=0 , and $,(r.0) = ¢,(r,z) =0

Subshtuting from equaton (7) into equaticn (6), the stress components and tossion
ngdity will be

1, (1,0) = (1,0 (1.0 + 5.1, (1,0) 87 Ty (1.0 y=n i_M}’;,__tv.1:,‘,‘(r.a)

(11)
T(.0) = N84 (1,0) +5.71,(1,0) + 8" Ty (£ ) =0 fg | 81,,(0)
(12)
and C, =n(C, +5C, +3*.Cy #...)=n % 8.C, (13)
=020
where the first approximation in equatipns (11), (12), and (13) are
Ton(10) = ~cos(@) 2L O Bel1D) (14-2)
gy a(0.0) | co5(8) 30,(r.8)

Tyl ) ainl§)~= ===y and (14-b)
Co. = -;-T § 6,(r,8).1drd0 (14-c)

Now equation (8) is solved for the first approximation ¢,(r,8) using Fourier seres
(sine half-range expansion) (7] for both f, and ¢,(r,8) as:

f,= 5 b,.sin(A9) . bo(r,0)= T R, (r).sin(1,0)
ka3 S kal3Se
where: B, =1, peI g o3 % (15)
k n(a, +ay) o

Substituting from equations (15) into equation (8) and obtaining the ordinary
differenual equation
d'Ry(r) 1dR(r) A _
dr'l + r d.'f r; Rt{r)— bt (16)

which has a complete solution in the form [8]
Ry(r)=C,.r™ +D,.1™ +V,(r) (7
and ¢,(r,0) in equation (15) wiil be in the form
bz 0= .E:J(C&.r"‘ +D,. 1™ +V,(r)).sin(A, ) (18-a)
-« Vi(@)- V(b).C™
Ch M :

a 5 |
C=— . V, =WV,.r*° vV =se
P MOmver Vs

Substituting from equation (18) into equanons (14)

V, (b).C* =V, (a)
C™ =Ch 4
A, =222

where C, =b

D, =b"
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o (£.8) = }hé;sin((x, SIB)L, +sin((h, +DO)L, | (18-b)
alr8) =5 5 oosi(hy - DOLL, +eosiCh, +10)L, (18-c)

. o2 1-Ch*? 1= C¥% 1-c*
& 4b* —(C,.b™ b V.. b — 18-d
R W i v e v A (18-d)

where L, =27, C,.t™" +(A, +2)V,.r and

L, =2x,.D.a™ " +(A, -2)V,.x
Repeating this procedure to solve equation (9) for ¢,(r,0),and equation (10) for
$,(r,08), then obtaung the second and the third approximations in equations (11),
(12), and (13) as

0(1,8)=  T(C,.r™ +D,.c™ +V,(r).sin(A,0) (19-a)
a=l.4.6_
-« V.(a)-V,(b).C™ o VL(b).CH -V, (a)
where C,=b"™" C™ -C~ . D,=bM C™>-C> d
A, .. , Vv, ()= i U,.r™+W, ™ +Q,,.r!
o k=l

4C, .2, (A, =) 4D, A (A, +1)
= ot e S tohe MO - e e
U,, = E(n,k) tl‘, n . W,, =F(n,k) il‘_t- l" LA ®A
V,

Quy = 5 S2H (2R k)~ B(a, k) - A (Fla, ) + E(w, )

F(n,X) = %[:Siﬂ(ai)- K,.cos(t,) | sin(a,)~K,.cos(e,) | ;,K,_,m}

a, a, a,.da,

s %(si.u(u;) +K, cos(a,) -sin(e,) + K, cos(a,) _ 2K, mn

(13 Ay Oy 0y
a, =x(n+k)+2a , a, =n(n-k)- 2«
a, =n(n-k)+2a , o, =w(n+k)-2a
f = Eosinl(h, - DO).M, +sia((h, + V0L M, (19-b)
T = '21' Tcos((k, - 1)8).M, +cos((x, +18). M, te)
n=Z. 4,6 -

M, =24, Cor e Tk #A U R (A, =AW, T R (A, +2)Q, 1

k=135

M, =200, 15"+ % (A, =AU+, F AW, 0 (R, —2)Qu T

k=13

C, =0 (19-d)
$:(0,0) = $(C...t* +D_.t 7 + V_{r)).sin(%,0) (20-a)
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o V(@) -V (b).C _iae Ya(D)CH -V (a) .
Co =0 C».—CH» o Ba=b CHs-C*» "
V()= % B, +B.r™+ B .rM +B,.c +B,.f
nalsg.6. . =h35—
\ iz "4Cn'ln‘{11’n —zl)'E(mln) . Bz = -4Dn‘l:’£ka +=1)“F(mln} ; l“ $kn
2 -2 A
20 (R, + 2 XA - DE(mD) 22U, (& + 20X -l)F(m e L
8, = TRy Moa X -A."
W (e =M XAy + DE(m)  2W, (3, 42, )(1 +1)F(m,n) —4D,_ A..(%, +1)G
8. = M -X g * OPSY
B = ~2Qu (3, + 2E(m.n)  2Q (+, - DF(m, n) V, A 4=\ )(}M_'.-'«.”,‘.l,‘(-i—‘.k‘,,)l-I£
»= =%, 4=, @-XX2¢%)  @-AX4-RD)
A =X, A =22
& _l—Kf[—-si;n(y,)+sin(7,))_EL(cos(yl)"_cos(nl_ Zm]
mk T
4 ‘f] Yz 2 Yl .-r'}. YI‘Y:
g 212K [sin(m_ﬁn(va>)+5[cos(v,J+w«v4)_ zﬂm)
=4 s Y 2\ vy, Yo Fada
7, =n({m+k)+4da , v, =7(m-k)-4a
7, =n{m-Kk)+4a , Y. =nw(m+k)—da
T =21 F - sin((h, - DB).S, +sin((A,, +19).S, (20-b)
LR N
- =-j- £ cos((R, = DB)S, +cos((R, + 1B)S, (20-0)

S,=2)_.C ="+ ZB‘(JLM FA T E B (A, =AY -

[ IRN

+ TB,(A, +A ) B (A, ~Ar " +B, (A, +2)r

kml3S

S, =24, D 4 T B(h, ~ A=+ By(h, +A )+

o=145 .

+ 3 B0, AN EB (A +A)r T B, —

k-lJi.._
-m o= Clvi, |- CI-L..

C,, =4b’ —_ +D b ——— &

. n-u:... ( 2+lm 2-A.

= 1- c hes 2 1=C"™ = |- C¥™

+ B,.b* +B,.b7 B,.b™

m‘}s_ : 2+A, 2 -k, +!=-i.);:!.... ’ 2+A, *
4,y IE L i€l C )

(20-d)




Mansoura Engineering Journal, (MEJ), VOL. 21, NO. 4 | December 1996 P7

ALGORITHM DEVELOPMENT
- INPUT:

1) Coefficients of elasncity (a,,,a,,,a,, ), and angle of twist per unt length (9 ).
) Sector's dimensions (a, b, o ).
i) Coordinates (1,0 ) for the point at which stress components and torsion ngidity are
calculated.
2- Calculate (5,K,) by using formulas (5), and (0,2, ) by using formula (15).
3- Calculate (V, V, (),C,,D, ), then ¢,(r,8) by using equation (18-a).
4- Calculate (L,,L, ), then 1, by using equation (18-b), 1, by using equation (18-c),
and C,, by using equation (18-d).
5- Calculate (a,a,,a,,a,), (F(n,k), E(nk), (U,,,W,,Qu), Va(0),(%,,C,.D,),
and 4, (r,0) by using equation (19-a).
6- Calcuiate (M,,M, ), 1,,, by using equation (19-b), and v, by using equation (19-c).
7- Caleulate (v,,74,7,,7.), (Guy . H,,), (F(m.n), E(m,n)), (B,,B,,B,,B,,B,), V,(r),
(2,.,C,.D,), and ¢,(r.8) by using equation (20-a).
8- Calculate (§,,S,), r,,, by using equation (20-b), <, by using equation (20-c), and
C,, by using equation (20-d).
9- OUTPUT:

1) The stress function ¢(r,6) by using equation (7).

1) The stress components, t_(r,6) by usingequation (i1), and t{r,6) by using
equation (12).
i) Torsion ngdity C, by using equation (13).

Computer program is designed in FORTRAN language, and runs on personal
computer. Double precession leads to more convergence and stability than single
precision. The following tables are chosen as samples of the obtained results.

4- CASE STUDIES

In the following, all numerical values are calculated in double precision form, ail

written results are performed to the fixed significant figures in the last two successive
b-a o

approximations , and at the point where (r,0) = (a +——2-—,-2-).
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EXAMPLE (1)

a- Consider an orthotropic prism (a,, = 0), having sector dimensions as; b= urut length,
C=0.2, «==n/4. Tables (], 2) give double precision numencal values for the first and
third approxiroanons for stress function, stress components and torsion ngdity against
truncation number, as in equations (18), and (20) respecuvely.

Table (1)
k 10xd, k | 100xT,, |k 10x1,, || k | 100xC,,
]

5 |-0.i84 5 [-0.99 5 10.239 17 |-0.7023

13 [-0.1844  [l15 1-0.993 |33 |0.2399 |33 |-0.70234
29 |-0.18445 |33 |-0.9957 |87 {0.23990 I 81 |-0.702346
63 | -0.184453 179 |-0.99373 ||89 | 0.239909 || 99 | -0.7023462 |

——

In equations (19-a, b, ¢, d ), for k=100, and n=8 the results ¢, =00,
T, = -0383398x 107, = -0.158808x 10, and C, =00 are obtained No more

accuracy 1s gained from n=8 to n=100

T'ﬂ

_Table (2) =100, n=100

M | 10" xd, MJ 10x1,, ] M | 10xty, |IM | 10xC,,
7 los 2 07 [l2 [-05 6 |023
(19 (054 s [-07a |6 035 |l8 l0253
35 |0.547 [l24 [-0744 |31 [-0339 |18 [0.2538
(59 [0.5474 |58 [-0.7444 144 [-03391 |58 [0.23389

Tables (1.2) show the solution's convergence and stability.

b-Consider an orthotropic prism (a,, = 0), having sector dimensions as; b=10 unit

length, o = /4. Table (3) gives double precision numerical values for stress function,
stress components t,,.t,, and torsion rigidity C, for first, second, and third

approximanons from equations (18), (19), and (20), for several values of C.
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Table (3) =75, n=76. m=77
| c=02 | c-04 c=06 | c=08
0.1x 9, -0.184453 | -0.187506 | -0.12960 | -0.0389
9, 0.0 =0.0 =0.0 0.0
100x6, | 0.547 0.069 -0.91892 | 0.6495
W0x1,,,  |-0.9937 -0.2792 0.0969 0.0541
Uiz -0.038 -6.1014 -0.145 -0.0626
0.1x7,, |-0.0452573 | -0.1461705 | -0.167801 | 0.183094
oy 0.2399 0.0674 -0.02340 | -0.013077
107, -0.158 -0.420 -0.601 -0.259
T2 -0.218213 | -0.62419 -0.60896 | 0.93501
0.01xC,, | -0.7023458 | -0.592681 | -0.317603 -0.0608452|
Cy 0.0 0.0 0.0 0.0 J
[10-001xC,, [ 01576299 | 0.138078 _ | 0.0709 -0.0165248|

?.9

Table (3) shows that, whenever the hoilow cylinder is thicker the convergence and
stability is better.

EXAMPLE (2):

a- Consider non-orthotropic pnsm (a,, =0), having sector dimensions as;, b=unit
length, C=02, o =x/6,and K,=1.0.

The first approximation in equation (18) are independent of K, and they are:

100X 6,=-0.94755 ,  100xT,,,=-0.56657, 10x71,,=0.21144, 100 x C, =0.264334 .

Table (4) gives double precision numencal values for the second approximation for
stress function, stress components, and torsion rigidity against tuncanon number, as in

equations (19).

Table (4) b, =00, C, =0
N | 1000x The 1000x T,
2 |-0.76 -0.20
4 [-0.766 -0.205
6 | -0.7663 -0.2053
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Table (3) gives double precision numerical values for the thired approximation for

stress function, stress components. and torsion ngidity against truncation number, as in
equarions (20).

Table (5) k=70, n=70

M | 100xd, [[M | 100x1,, || M 0.1x1,_},,_—‘m 100x C,,
5 109 e Jo7z |1 13 |09

7 |-090 |[30 |0.74 Ii‘ 8 |0.95

11 |-0.908 |la6 [0741 |9 0.952
129 [-09087]|54 07415 |22 18 [09521 |

b- Consider non-orthotropic prism {a,, # 0), baving sector dimensions as; b= 10 umt

length, C=0.2. a=a/6. Table (6) gives double precision numencal values for stress
components t,,.t, and torsion rigidity C, for the first. second, and third

approximatons in equations (18), (19), and (20), for several values of K, .

Table (6)
9,=-0.9475, 10X Ty =0.56657, Ty, =02114, 001xC, =0.264334

f T K, =001 K, =01 | K, =05 | K, =10 | K, =5.0 )
) = 0.0 =~ 0.0 = 0.0 =090 =00

b, 0.177691 | 0.11761 | -0.18648 | -0.65176 | -7.77972
10x7,, | -00281 |-003247 | -0.052 | -0.076 -027 |
!loxre,,, 0.1332 | 0.19915 | 0.4790 | 0.7889 1.60 J
L10xt,, | 00076 | -0. 003}-0 0140 | -0.0205 | -0.0720

10xT,, | 04969 | 05388 | -0.489 | -1.809 -?33133J

001xC,, | 0.16969 l 0.22813 ] 0.45314 } 0.65464 | -0.9237

Table (6) shows that , whenever K, 1s smaller , convergence is faster , otherwise more

approximated terms are needed for acceptable accuracy .

5- CONCLUSIONS
A numerical method 1s innoduced for solving the problem of pure torsion equanon of a
continuously homogeneous prismatic bar, which is cut fongitudinally from hollow
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cylinder, having a material wath rectilinear amusotropy and a circular sector cross
secnon. Mathematical model is denved using Founer senes analysis, and the stress
components are obtamned as counversion expansions dependent on a small physical
parameter, which characterizes the matenal arusotropy. The solunon is suitable for
orthotropic and non-orthotropic materials. Numenical resuits show that:

1- Whenever the phystcal parameter is sinaller. the truncation error is smaller. and the
nuwraber of approximating terms for acceptable results is lesser.

2- First approximation is always independent of coefficients of elasticity for
orthotropic or non-orthotropic matenals.

3- The series's summations for orthotropic matenals are dependent on the prism's
dimenstons and independent of matenal's coefficients of elasticity.

4- Whenever dimensions are smaller the senes converge faster and better, therefore a
suitable length's unit 1s chosen for small errors.

5- Whenever the hollow cylinder 1s thicker the convergence and stability ts better.

6- Personal computer needs few seconds to calculate the above resuits in double
precision.

7- This mathematical mode! fails for solid cylinder, when sector's angle equals :-'"zi,

and for non-orthotropic matenals when sector angle equais % :
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