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ABSTRACT 

Using the elastic continuum approach for the analysis ofbeam on elastic 

foundation, a method is developed to calculate an equivalent coefficient of 

subgrade reaction k to use in the Winkler model. It is shown that dividing 

the contact pressure produced from elastic continuum model by the 

corresponding settlement along the beam length generates length dependent 

coefficient of subgrade reaction that accurately describes the interaction 

between the beam and the supporting soils. Results from the developed 

I I 
equivalent k parameter are compared with those from elastic continuum 

model and by using different k values predicted by other methods that are 

currently in use. For uniformly loaded beam, graphs and regression equations 

are provided from which an equivalent k value at different positions along 

the beam length ( e g ,  at the center and the edge of the beam) can be 

calculated as a function of the elastic soil properties and the rigidity of the 

beam 
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I. INTRODUCTION '/ 
The response of the supporting soil is considered the most important 
parameter in the analysis of soil-structure interaction problems such as beam 
on elastic foundation (Hain and Lee, 1974; Horvath, 1993; Ulrich, 1995; El- 
Garhy, 2001). There are two approaches that can be used to model the 
response of the supporting soils. The first approach is the Winkler approach 
or the subgrade reaction approach, in which the soil is represented by a series 
of independent linear springs, each spring having stiffness called the 
coeficient of subgrade reaction. Winkler suggested that the contact pressure, 
P , at a point is proportionai to the displacement, IV , at that point, Eq. (I). 

1' = J ~ M '  (1 )  
Where 

k = the coefficient of subgrade reaction ( F / L z  ). 

The main drawback in the Winkler model is that, it cannot consider the ,- - 
continuity of the soil. Recently attempts were made to overcome this I 

drawback by assuming some kind of interaction between soil springs and 
added a second parameter to Eq (1) (Horvath, 1989, Shirima and Giger, 
1992) 

The second approach is the elastic continuum approach, in which the soil is 
I 

assumed to be a semi-infinite elastic continuum. The elastic continuum 
approach is shown to be the most realistic approach representing the I I 
performance of the subgrade (Hain and Lee, 1974, El-Garhy, 2001) 
However, the effective use of this approach requires a careful determination 
of the elastic soil properties to establish values appropriate to the field stress 
state (Hain and Lee, 1974). 

Mathematically, the elastic continuum approach is considered much more 
complex than the Winkler approach. Therefore, the Winkler approach has 
been used by most commercial computer codes to solve many soil- 
foundation interaction problems. The user of these codes has to determine 
the coeficient of subgrade reaction, k , to represent the soil. There is no easy 
way to determine the k value because its value is not unique for a given type 
of soil (Daioglu and Vallabhan, 2000). 

In the analysis of soil-foundations interaction, using a constant k value to 
model the supporting soil leads to wrong design (Ulrich, 1995) If the 
analysis is performed for uniformly loaded beam or raft foundations using a 
constant k value, the values of differential settlements, bending moments, 
and shear forces in the foundations will be equal to zero, which doubtless is 
not correct. To overcome this problem Ulrich (1991) suggested the use of 
the discrete area method, in which varying coeficient of subgrade reaction is 
considered and ACI Committee 336 (1991) and Bowles (1996) have 
suggested to double the value of k at the edges of the foundations The 
actual subgrade responses beneath beam and raft foundations lead to 
deflections and contact pressures that result in non-uniform coeficient of 
subgrade reaction (Dalogl~~ and Vallabhan, 2000) 



Because of the extensive use of Winkler approach with constant k value as a 
subgrade model by most of commercial computer codes and the variety of 
methods suggested over the years for calculating the value of the constant k , 
an evaluation of relative accuracy of these methods is of some interest. The 
most important task is developing a rational and simple method to calculate 
the actual distribution of the coefficient of subgrade reaction beneath the 
foundations. There are a number of factors that govern the value of the 
coefficient of subgrade reaction, these factors include elastic soil properties, 
foundation rigidity, and the applied load pattern. 

In this' paper the different methods for calculating the constant coefficient of 
subgrade reaction are presented and evaluated. Using the elastic continuum 
model, more-accurate method is developed to calculate equivalent values of 
the coefficient of subgrade reaction along the beam length to use in the 
Winkler model. Comparison between the results of the elastic continuum 
model with those of Winkler model using the equivalent k values and five 
different values of k as suggested in the literature are presented and 
discussed. For uniformly loaded beam, graphs and regression equations are 
provided from which an equivalent k value at different positions along the 
beam length (e.g., at the center and the edge of the beam) can be determined 
as a finction of the relative stiffness and LIB ratio. 

2. PREVIOUS METHODS TO CALCULATE k VALUE 

The available methods used to calculate the constant value of the coefficient 
of subgrade reaction can be classified into two categories: table or chart 
methods, and those based on the theory of elasticity The most widely 
referenced tablelchart methods are based on plate load tests data (Terzaghi, 
1955; Scot, 1981; Bazaraa and Howeedy, 1975; Ismael, 1987). This paper 
will focus on the methods based on the theory of elasticity. These methods 
are presented and discussed in the next section. 

2.1. Biot Method 
Biot (1937) solved the problem of an infinite beam with a concentrated load 
resting on two and three-dimensional elastic soil continuum. Biot found a 
correlation of the continuum elastic theory and the Winkler model where the 
maximum moments in the beam are equated. 
In the case of infinite beam resting on two-dimensional elastic foundation, 
Biot developed the following equation for k value. 

Where 
E ,  = modulus of elasticity of the soil 
EI = bending rigidity of the beam 
b = half beam width 



In the case of infinite beam resting on three-dimensional elastic foundation, i 
Biot developed the following equation for k value. 

where 
C = 1.0 if distribution of pressure across beam width is uniform 

= 1.13 if deflection across the beam width is uniform 

The value of C can be taken 1.10 for practical purposes (Vesic, 1961). 

2.2. Vesic Method 
Vesic (1961) extended Biot's solution of infinite beam resting on three- 
dimensional elastic foundation to the case of loading by a couple and 
introduced a criterion for using Winkler model with beams of finite length. 
On similar manner of Biot, Vesic developed the following equation for k 
value 

k = 

where 
R = 2h 

= beam width 

All the terms in Eq. (4) are the same as in Eq. (3) 

2.3. Horvath Method 
Horvath (1983a) developed a new subgrade model for raft-soil interaction 
Horvath model was based on the theory of elasticity and was called the 
Reissner Simplified Continuum (RSC). Using RSC, Horvath (1 983b) 
developed equations to calculate the coefficient of subgrade reaction as a 
hnction of the soil modulus of elasticity, L;, , and the depth of elastic soil 

layer, H , taking into account the change of E ,  with the depth of elastic soil 

layer. 

For constant soil modulus of elasticity with depth, Horvath developed the 
following equation: 

For soil modulus of elasticity change with depth according to Eq. (6), 
Horvath developed Eq. (7) to calculate /i value: 

where 

E,, = soil modulus of elasticity directly beneath the loaded area 

A = the rate of change of soil modulus of elasticity with depth 



k = 
A 

In(E, + AH) - ln(Eo) (7) 

For soil modulus of elasticity change with depth according to Eq. (8), 
Horvath developed Eq. (9) to calculate k value: 

where all the terms in Eq. (8) are the same as in Eq. (6). 

To calculate the k value by Horvath method, two parameters should be 
known: the layer thickness, H , and the soil modulus of elasticity Horvath 
(1983b) pointed out that H should be selected as the depth to the rigid 
layer. If the width of the loaded area is small with respect to the depth to the 
actual rigid layer, Horvath suggested that the value of H could be taken 
equal to a depth less than the depth to the actual rigid layer, where vertical 
settlement can be assumed to be negligible. Horvath (1 983 b) suggested the 
following equation to calculate the value of H 

H = I,B (10) 

where 
I,  = an influence factor to be determined 
B = the width of the loaded area (beam width) 

I, was taken as 2 as suggested by Schmertmann in settlement calculation 

(Horvath, 1983 b). 

2.4. Bowles Method 
Bowles (1996) developed the following equation, Eq. (1 l), to calculate the 
k value. This equation produced from the immediate settlement equation 
based on the theory of elasticity. 

where 

I ,  = an influence factor that depends on L I B and H I B 

I ,  = an influence factor that depends on L IB  and 11 l B  

B = the width of the loaded area (beam width) 
L = the length of the loaded area (beam length) 

, H = thickness of soil layer 
= 5 U as recommended by Bowles, 1996 

I) = foundation depth 



The influence factors I, and I, can be determined fi-om tables prepared by 

Bowles (1 996). Equivalent 

3. NEW METHOD TO CALCULATE EQUIVALENT k VALUES 

The elastic continuum model is used in an attempt to determine equivalent 
values for the coefficient of subgrade reaction along the beam length. After 
performing the analysis of the beam using elastic continuum model, the 
equivalent k values are computed by dividing the contact pressure by the 
corresponding settlement at each node along the beam length. Using the 
equivalent k values, the same beam is analyzed by the Winkler model. The 
resulting bending moments and settlements compared to that produced form 
elastic continuum model. It is shown that using the equivalent k values with 
the Winkler model describes accurately the interaction between the beam and 
the supporting soil like the elastic continuum model. 

The authors developed a computer program called WCBECM (Winkler 
Coefficient for Beam on Elastic Continuum Model) using the elastic 
continuum model and the Finite Element Method to analyze the interaction 
between the beam and the supporting soils. WCBECM is able to calculate 
the values of settlement, contact pressure, and equivalent k value at each 
node in the finite element mesh. WCBECM is able to analyze the beam when 
subjected to different load patterns. WCBECM is coded in FORTRAN and 
suitable for microcomputers. 

3.1. Numerical Examples to Check the New Method 
Numerical examples are selected to compare the results of the elastic 
continuum model with those of Winkler model using the equivalent k values 
determined by WCBECM and five different values of constant k as 
determined from the previous equations. The first example is a beam 
subjected to two symmetrical concentrated loads of 500 kN and resting on 
elastic half space as shown in Fig. (la). The beam is of 10-m length, 1-m 
width, and 0.5-m thickness. The modulus of elasticity of the beam is 
2.1 1 x lo7 kN l m 2  . The modulus of elasticity and Poisson's ratio of the 
subgrade are 1.0 x lo4 k N / m 2  and 0.2 respectively. 

The program WCBECM is used to determine the equivalent k  values along 
the beam length for the beam shown in Fig. (la). These values are drawn 
against the beam length as shown in Fig. (lb). The displacements and the 
bending moments along the beam length are presented in Figs. (Ic, 1 d). 
Referring to these figures it is observed that: 

1. Excellent comparison between the results of Winkler model using 
equivalent k values and those from the elastic continuum model. The 
maximum bending moment at the center of the beam is calculated as 
3 15.4 kN.m using equivalent k  values against 3 15.3 kN.m using elastic 
continuum model. 

2. The results of Winkler Model using Biot equation (2D), Eq. (2), are 
highly greater than those from the elastic continuum model. The 
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Fig. (1). Comparison of Results for Two Concentrated Loads: (a) Beam 
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maximum bending moment at the center of the beam is calculated as 
675.9 kN.m using Biot equation (2D) against 3 1 5.3 kN.m using elastic 
continuum model. 

3. The results of Winkler Model using Bowles equation, Eq. (1 I), are 
smaller than those from the elastic continuum model. The maximum 
bending moment at the center of the beam is calculated as 246.2 kN.m 
using Bowles equation against 3 15 3 kN n1 using elastic continuum 
model. 

4 The results of Winkler Model using Biot equation (3D), Eq. (3), Vesic 
equation, Eq. (4), and Horvath equation, Eqs (5, lo), are greater than 
those from the elastic continuum model. The maximum bending moment 
at the center of the beam is calculated as 473.2 kN.m , 501 4 kN.m , and 
516.8kN.m using Biot equation (3D), Vesic equation, and Horvath 
equation, respectively, against 3 15 3 kN.ni using elastic continuum 
model. 

The second example is a beam subjected to uniformly distributed load of 
100kN / m 2  and resting on elastic half space. The beam is of 10-m length, 
1.25-m width, and 0.5-m thickness. The modulus of elasticity of the beam is 
2.1 1 x 1 o7 kN ln?' . The modulus of elasticity and Poisson's ratio of the 
subgrade are 1.2 x 10' kN / m2 and 0 3 respectively. 

The equivalent k values are determined by the program WCBECM and 
drawn against the beam length as shown in Fig. (2a). The displacements and 
the bending moments along the-beam length are presented in Figs. (2b, 2c). 
Refering to these figurks'it is observed that- 

1 Excellent comparison between the results of Winkler model using 
equivalent k values and those from the elastic continuum model. The 
maximum bending moment at the center of the beam is calculated as 73 8 
kN.m using equivalent k values against 74.6kN.m using elastic 
continuum model. 

2 The results of Winkler model using constant coefficient of subgrade 
reaction calculated by the previous equations produced constant 
displacements and consequently zero bending moments. 

4. EQUIVALENT k VALUES FOR UNIFORMLY LOADED BEAM 

WCBECM is used to determine the equivalent k values along the beam 
length for many problems of uniformly loaded beams resting on elastic 
continuum model. The data of the beam-soil system used in the study are 
given in Table 1 .  

For convenience, Poisson's ratio of the soil and the modulus of elasticity of 
the beam material are assumed constant and taken 0.3 and 2 . 2 ~  1 0 ' k ~ / n 1 '  
respectively in this research 
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Table 1. The data of the beam-soil system used in the study 

I Beam properties I Beam thickness I Es 

Non-dimensional terms used in the analysis are given as follows: 

kBL4 
Kw=-  

EI 
% .  

where 
relative stiffness as defined by Poulos and Davis (1974) 
modulus of elasticity of the soil 

modulus of elasticity of the beam material 

moment of inertia of the beam 
beam length 
beam width 
non-dimensional coefficient of subgrade reaction 

coefficient of subgrade reaction (F 1 L~ ) 

Samples from the results are presented in Fig. (3). Fig. (3) shows the 
variation of the non-dimensional coefficient of subgrade reaction, K,, along 

the beam length at different values of relative stiffness, K, ,  and beam 
rigidity, EI . Referring to Fig. (3) it is observed that: 

1. The distribution of the coefficient of subgrade reaction is non-uniform 
along the beam length. However, over most of the middle beam length 
(approximately 90% of the beam length) the rate of change of K w  is 

small. 
2. In all studied cases, the ratio between the value of K ,  at the edge of the 

beam to the value of K, at the center of the beam is not constant and 
grater than 2. This ratio increases as the beam rigidity increases and 
decreases as the relative stiffness decreases or as the modulus of elasticity 
of the soil increases. 

The non-dimensional coefficient of subgrade reaction, K, , at different 

positions along the beam length and the relative stiffness, K, , obtained in the 

10 



Fig. (3). Variation of Non-dimensional Coefficient of Subgrade Reaction 
along the Beam Length at Different Beam Rigidity and Relative Stiffness 



above analysis is presented in a graphical form using logarithmic scale in both 
axes as shown in Fig. (4). Referring to Fig. (4) the relationship between K ,  

and K,  form a straight line for different values of L I B  ratio at different 
positions along the beam length. The following equation is developed to 
represent the relationship between K ,  and K ,  : 

K ,  = C ,  ( K ,  )-C2 (1 4) 

Values of the constants C, and C., of Eq. (14) at different positions along 
the beam length depend on the value of L l B ratio and can be determined 
from the following regression equations: 

At the edge of the beam: 

C ,  = 5.47845 - 0.564369 - + 0.017558 - (a! (6)' 

At O.5L (at the center of the beam): 

C ,  = 5.38563 - 0,557404 - + 0.01 76956 - (i) 



Fig. (4). Non-dimensional Coefficient of Subgrade Reaction as 
a Function of Relative Stiffness and L/B Ratio along the Beam 

Length: (a) At the Edge; (b) At 0.05 L; (c) At 0.3 L; At the Center 



The values of the non-dimensional coefficient of subgrade reaction K ,  at the 

remaining positions along the beam length can be determined by 
interpolation. 

4.1. Numerical ExampIes to Check Eq. (14) 
Using the above equations, the equivalent k values along the beam length are 
calculated and presented as a comparison with the values of k from the 
program WCBECM for two examples with different I! I B ratio as shown in 
Figs. (5a, 6a). The first example is a beam subjected to uniformly distributed 
load of 100kN 1 rn2 and resting on elastic half space. The beam is of 10-m 
length, 1.25-m width, and 0.5-m thickness. The modulus of elasticity of the 
beam is 2.1 1 x lo7 kN 1 71z2 . The modulus of elasticity and Poisson's ratio of 
the subgrade are 1.2 x lo4 kN lnz2 and 0.3 respectively. The second example 
is a beam subjected to uniformly distributed load of 100kN 1 n ~ '  and resting 
on elastic half space. The beam is of 20-m length, 1 .O-m width, and 0 5-m 
thickness The modulus of elasticity of the beam is 2 1 1 x 1 o7 kN Im' The 
modulus of elasticity and Poisson's ratio of the subgrade are 
1.75 x lo3kN Ini'and 0.3 respectively. 
The displacements and the bending moments along the beam length for the 
two examples are presented in Figs. (5b, 5c) and Figs. (6b, 6c). Refering to 
these figures it is observed that the developed equation, Eq. (14), gives 
values of k which match with the values of k from the program WCBECM 
along the beam length. The maximum error in the values of k is found to be 
in the range of 0.7% to 19%. The maximum error in the maximum 
displacements and bending moments due to this error found out to be in the 
range of 9 5% to 18%. 

5. CONCLUSIONS 

A simple rational method capable of providing improved estimates of the 
actual distribution of the coefficient of subgrade reaction to be used in the 
analysis of soil-foundation interaction is introduced The following 
conclusions is reached from this study 
1 The coefficient of subgrade reaction is not a constant value but it is 

varying along the beam length The variation of the coefficient of 
subgrade reaction is manly dependent on the elastic properties ofthe 
supporting soil and the beam rigidity in addition to the applied load 
pattern 

2 The results presented illustrate the significant shortcomings of different 
methods that are still widely used to calculate the constant k value 

3. For uniformly loaded beam, the ratio between the coefficient of subgrade 
reaction at the edge and the center of the beam is not constant and 
depends on the elastic properties of the supporting soil and the beam 
rigidity. 

4 For uniformly loaded beam, graphs and regression equations are provided 
for non-dimensional coefficient of subgrade reaction as a function of 
relative stiffness and L/B ratio of the beam from which equivalent k 
values can be calculated 
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