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A COMPARATIVE STUDY OF TWO NUMERICAL METHODS FOR
REGULATING UNSTEADY FLOW IN OPEN CHANNELS
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ABSTRACT

Unsteady flow in open channels can be simulated by solving the Saint Venant equations to
predict the discharge and water level in the channel during the future time series under the
given condition. On the other hand, the operation problem is used to compute the inflow at the
upstream section of the channel or a schedule of operation for the regulating structures of the
delivery system to get a predefined water demand at the downstream end of the channel. This
type of problem is also known as the inverse computation of open channel flow. The finite
difference Preissmann implicit model was used to solve the operation-type problems in open
channels, based on the saint Venant equations. The final linear system of equations was solved
by the double-sweep algorithm. The computed results using the finite difference implicit model
showed more accuracy and less oscillation than that obtained by an explicit model for all the
numerical tests. The finite difference Preissmann implicit model was successfully applied to a
nonprismatic reach of El-Mansouria canal between Meit-Ghamer and Sanayet regulator.

INTRODUCTION

Unsteady open channel flow is governed by the Saint Venant equation, which express the
principles of conservation of mass and momentum. Mathematical models of unsteady open
channel flow are commonly built for engineering purposes[1,3,4,7] such as flood defence
design, navigation, flood forecasting, dam-break analysis’, and irrigation scheme control.

Operation along irrigation canals aim to maintain a hydraulic targeted state in order to
achieve reliable and equitable water deliveries to users. Mathematical models were developed
for operation-type problems [2,5,6,8.10] to predict the upstream inflow according to the
prescribed downstream flow hydrograph. Any error in the inflow rate prediction can cause high
waler losses or the dissatisfaction of users.

A transient control technique, known as gate stroking [2,10], was used to set gate
movements and upstream inflow according to the prescribed downstream tlow hydrograph.
The technique used the method of characteristics which is more complex and unwieldy. Easier
solution for solving the unsteady open channel governing equations can be obtained using
finite differences. Two finite difference algorithms have been recently proposed for solving the
inverse problem. The first one is the implicit method[2)and the other is the explicit method [6].
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The inverse implicit finite difference Preissmann scheme was tested with numerical
experiments, The computed results using the inverse implicit scheme was compared with that
obtained by the explicit backward operation scheme presented in Liu, et al. 1992 {6). The
effects of Manning’s roughness coefficient and the channel bed slope on the computed
upstream inflow were examined. Also, the inverse implicit scheme was applied successfully to
a nonprismatic reach of El-Mansouria canal between Meit-Ghamer and Sanayet regulator [9).

GOVERNING EQUATIONS

The continuity equation and the momentwn equation which are used to describe open
channel flow, usually referred to as de Saint Venant equations. The Saint Venant equations
can be formulated in different ways, depending on the assumptions used in their derivations.
Assuming no lateral outflow, these equations can be written as:
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where: 4 = wetted cross-sectional area; b = wetted top width; g = gravitational constant; =
discharge (through 4); y = depth of flow ; ¢ = time; x = space; Spy= bottom slope of the channel
and Sy = friction slope.

NUMERICAL SOLUTION METHODS

Numerical Seolution of the Saint Venant equations can be obtained at a finite number of
grid points in the rectangular spatial-time grid using finite difference methods [1,3,4,7]. Finite
difference schemes can be classified into two types: explicit and implicit. In the explicit
difference methods, the dependent variables, atarectangular grid point on an advanced time
line are determined from the known values and conditions at grid points on the present time
line or present and previous time lines. In the implicit methods, unsteady flow may be
obtained at a subsequent time levels on the x-f plane by setting up many equations as there are
unknown dependent variables and by solving them simultaneously using appropriate time
boundary conditions,

Preissmann Implicit Routing Model

Implicit schemes which can use large time steps without any stability problem are more
widely applied. The Preissmann scheme is the most widely applied implicit finite difference
method because of its simple structure with both flow and geometrical variable in each grid
point {1,3,4,7]. This implies a simple treatment of boundary conditions and a simple
incorporation of structure and bifurcation points. Also, it has the advantages that steep wave
fronts may be properly simulated by varying the weighting coefficient.

The computational grid for the Preissmann implicit scheme is shown in Fig.l. The
application of the Preissmann scheme to the derivatives in equations (1) and (2) yields,
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distributing terms in space and & = a weighting coefficient for distributing terms in time,
0=6<l. In the above expressions, all the variables with subscripts’ » are known and all the
variables with subscripts” n+/ are the unknowns. Applying these numerical approximations to
equations (1) and (2) yields
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Fig. 1. Computational Grid for Preissmann Scheme

Where C D, E F G C, D, £, F,and G are coefficients computed with known values at
time level n. Equations (6) and (7) constitute a system of linear algebraic equations in four
unknowns. As there are J points on the row n+/, there are J-/ rectangular grids and /-7 cells in
the channel. Thus there are 2(/-1) equations for the evaluation of 2 unknowns. Two boundary
conditions provide the necessary two additional equations to close the system. Any standard
method of solving linear algebraic equations can be applied to obtain the solution of 2¢{J-1)
equations. The double-sweep method [4,7] is very efficient and saves the time consumed by
solution.

Explicit Backward Operation Method

For operation problems, the expected discharge and water level downsiream boundary
conditions are specificd. The backward operation mzthod [6] is an explicit solution based on
the Preissmann scheme, Considering the time level (N} as the final condition (Fig. 2), and
knowing () , and y;between any two time levels at the downstream section, the discharge and
water depth profile at the time level (V-/; can be computed by proceeding first backward in
space and then backward in time. In this approach, the Preissmann scheme, Fig. 2, is writlen
as:
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The solution begins at the top-right comer of the time-distance plane, Fig. 2. The
application of the finite difference’equations yields an algebraic system of two equations and
two unknowns. The solution obtained cell by cell, moving first backward in space and then
backward in time.
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Fig. 2. Explicit Backward Computational Grid

Inverse Implicit Finite Difference Method

The computational scheme can be shown as a boundary value problem rotated 90° in the
distance-time grid [2] as shown in Fig.3. The specified depths and discharges are the initial
conditions in this rotated problem. The boundary condition can be either a discharge profile or
water depth profile at both the initial time and the final computational time. The application of
the Preissmann scheme to the derivatives in equations (1) and (2) yields the same equations
(8), (9) and (10). The solution proceeds upstream by solving 2( N-/) equations for the
evaluation of 2¥ unknowns. The two boundary conditions provide the necessary two additional
equations to close the system.

DESCRIPTION OF TEST CANAL

The performance of the inverse implicit finite difference scheme was tested using the
example presented n Liu, et al. 1992 [6]. The foregoing test is for the unsteady flow in a
trapezoidal channel with a bottom width of 5.0m and side slopes /.54 to /¥. The bottom slope
is 0.00/, Manning’s n=0.025, the channel length is 2.54m, and a fixed overflow weir with free
flow condition is considered as a downstream outlet. At the downstream outlet, the discharge
increases from 3 m’/sec to 10 mi’/sec in one hour, it remains constant at /0 m’/sec for two
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hours, then decreases to 5.0 m’/sec in one hour (demand line in Fig. 4.). The discharge-water
depth relationship of a fixed weir under free-flow condition was used to obtain the water depth
al the downstream end section. The discharge and water depth at the upstream intake, Figs. 4
and 5, were computed using the specified discharge and water depth at the downstream end
section as the initial condition.
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Fig. 3. Implicit Finite Difference Computational Grid

The obtained upsiream discharge hydrograph was then used as upstream boundary
condition and the fixed overflow weir at the end of the channe! was used as the downstream
boundary condition, to simulate the flow in the channel with the routing implicit finite
difference scheme.  The computed downstream hydrographs reasonably reproduced the
prescribed demand, Figs. 4 and 3.

NUMERICAL TESTS AND COMPARISON OF RESULTS

The computed upstream discharge and depth hvdrographs using both of the backward-
operation explieit method and the inverse implicit method are shown in Figs. 4 and 5. The
space interval Ax =300 m and time interval At = 300 sec were used in hoth of the backward-
operation explicit method and the inverse implicit method. The weighting coefficient ¢ = 0.5
and the weighting coefficient & = 7.0 were used in the backward-operation explicit method
while the weighting coclficient ¢ = 7.0 and the weiphting coefficient & = 0.8 were used in the
inverse implicit method. Figs. 4 and 5 show very litlle difference between the compured
rraphs using both the backward operation explicit method and the inverse implicit
method. The upstream discharge hydrograph obtained by the inverse implicit scheme, when
used as upstrenm boundary conditions in the routing problem, reproduced downstream flaw
hvdrographs closer to what are expected.

The inverse implicit scheme was tesied with numerical experiment by verifying the
following parameters: The computation space interval Ax, the time interval A7, the weighting
coefficient ¢, and the weighting coefficient & The space interval Ax =250 m, the time interval
Ar =100 sec, the weighting coefficient ¢ = /.0, and the weighting coefficient & = (.7 were
used in the computation of upstream hydrographs, except for the tested parameter.




C. 19 M. T. Shamaa

11.0
[ Demand
100 | —=— Explicit D.S.
------ Implicit D.S.
— -e — Explicit U.S.
9.0 5
- —— |mplicit U.S.
g = RN
&> 8.0
E .
5
5 70
=
Q
2
Q50
5.0
40 -4-;- ] PR PR 1 L L i " 1 F I R S S S S {
0.0 5000.0 10000.0 15000.0 20000.0 25000.0

Time (sec)

Fig. 4. Comparison between Discharge Hydrographs Using Explicit Backward
Operation Method and Inverse Implicit Method.
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Fig.5. Comparison between Water Depth Hydrographs Using Explicit
Backward Operation Method and Inverse Implicit Method.
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The computed upstream hydrographs using Ax =100 m, 250 m, and 500 m are shown in
Figs. 6 and 7. The computed hydrographs for Ax =700 m show bigger oscillation during both
the increasing and decreasing of the flow rate than the other two values. Figures 6 and 7 show
that the increasing of Axfrom /00 m to 500 m damped the oscillation during both the
increasing and decreasing of the discharge. Liu et al.[6] showed that the effect of changing Ax
has a little effect and could be neglected on computing the upstream hydrographs using the
backward operation explicit method.

The computed upstream hydrographs, Figs.8 and 9, using At =60 sec, 600 sec, and 1200
sec are shown in Figs.8 and 9. The time interval A1 =60 sec shows more oscillation in the
computed results during both the increasing and decreasing of the flow rate than that of the
bigger values due to its superior accuracy. The computed results with time interval Ar = 600
sec, and 1200 sec show oscillation before the decreasing of flow from /0 m’/sec to 5.0 m*/sec
which deesn’t appear in the computed results with Ar =60 sec. Liuetal. 1992 [6] mentioned
that the computed upstream hydrographs using the backward operation explicit method with a
smaller time interval has more oscillation which can cause the failure of the computation, on
the contrary to the inverse implicit finite difference scheme which has the advantage of
stability.

Figures 10 and 11 show that the oscillations of the computed upstream hydrographs are
damped as the weighting coefficient ¢ increases from 0.5 to /.0. Bautista et al. [2] show the

same effect of the weighting coefficient ¢ on the computed upstream discharge hydrographs
for gate stroking problem. Liu et al. 1992 [6] didn’t test the effect of the weighting coefficient
¢ on the computed hydrographs using the backward-operation explicit method.

The computed upstream hydrographs for different values of the weighting coefficient &
show that the oscillation during both the increasing and decreasing of the flow is damped when
@ increases from 0.5 to (.8, then the oscillations spread along the solution as & increases from
0.8 to [.0.Figs 12, and 13 show the computed upstream hydrographs for & = 4.5, 8.8, and /.0.
Bautista et al. [2] didn’t test the effect of the weighting ccefficient & on the computed
upstream discharge hydrographs for gate stroking problem. Liu et al. 1992 [6] showed a ver
big oscillation cccurred on the upstream computed hydrographs, using the backward operation
explicit method, for #=0.6. This oscillation was damped as & increased from 0.6 to 1.0.

The inverse implicit finite difference scheme was also tested using different channel
length. Asshown in Figs. 14 and 15, the length of the channel doesn’t affect the oscillations of
the computed upstream hydrographs, but the computed upstream hydrographs are more shifted
to the left as the channel length increases to provide the same downstream flow pattern. Liu et
al. 1992 [6] mentioned that the oscillations in the computed upstream discharge hydrographs
using the backward operation explicit method are amplified with the increasing of channel
length.

The effect of channel slope on the computed upstream hydrographs with the inverse
implicit finite difference scheme was also tested using Sp=0001, 0.000!, and 0.00001. The
space interval Ax =300 m, the time interval Ar=200 sec, the weighting coefficient ¢ = 1.0.

and the weighting coefficient 8= 0.8, were used in the computations. As shown in Figs. 16 and
17, for a channel length of /0 km, the damping effect ofthe finite difference Preissmann
scheme is more visible as the bed slope of the channel becomes milder.

The effect of Manning’s roughness coefficient on the upstream hydrographs for a channel
length of /0 fm and a bottom slope of §.007 was tested using n=0.025, 0.02, and 0.015. The
computed upstream discharge hydrograph shifts to the left as the Manning’s roughness
coefficient increases to provide the same downstream flow pattern. The computed upstream
depth hydrograph shifts upward and to the left as the Manning's roughness coefficient
tncreases. The results are shown in Figs. 18 and 19.
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Fig. 7. Computed Upstream Water Depth Hydrographs by Inverse Implicit
Scheme at Different Distance Intervals.
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Fig. 9. Computed Upstream Water Depth Hydrographs by Inverse
Implicit Scheme at Different Time Intervals.

i S F s
pel ¢ =08
.- # =10
i
3.0 I ) " 1 1 4 L L " Lo r 1 1 n L 1 e i L
0.0 5000.0 10000.0 15000.0 20000.0 25000.0
Time {sec)

Fig. 10. Comparison of Computed Upstream Discharge Hydrographs Using
inverse Implicit Scheme with Different ¢ Factors.

1.4
13 F
12 §
11 F
10
09
08 |
07 B v e

0.0 5000.0 10000.0 15000 0 200000 250000
Time {sec)

T

Waler depth {m)

Fig. 11. Comparison of Computed Upstream Water Depth Hydrographs
= Using [nverse Implicit Scheme with Different ¢ Factors.




C. 23 M. T. Shamaa

12.0
11.0
10.0
9.0
8.0
7.0
80 E ;
R ——"

4-0 n a i L 1 " " L ‘.‘ 1 " L I L L
0.0 5000.0 10000.0 15000.0 20000.0 25000.0

Time (sec)
Fig. 12. Comparison of Computed Upstream Discharge Hydrographs Using
Inverse Implicit Scheme with Different & Factors.

T T

Discharge (m%sec)

14 [
i3k aeildese B 208
E e, _
2k = ¢ =08
S . Y R g =10
E 11 F —
(] E
=]
C 10 F
Z E
2 09 F
08 F
07 : L L 1 1 1 i i L F L I 1 L 1 1 L i 1 1 1L 1 a1 Fa
0.0 5000.0 10000.0 15000.0 20000.0 25000.0

Time (sec)
Fig. 13. Comparison of Computed Upstream Water Depth Hydrographs
Using Inverse Implicit Scheme with Different# Factors.

11.0 ¢
10.0 F 2 —
g FE—— e % \
© 9@ L "ttt Length 2.5km s
7] R .
& Length 5xm |
E 80 F o --e---Length10km R \
% 7.0 ——*HD_C:\:NWQWH ‘a.‘
5 i 3 ;
Eﬂ 8.0 ¢ "-. %
50 “i.. o,
e S S N
0.0 5000.0 10000.0 15000.0 20000.0 25000.0
Timefsec)

Fig. 14. Computed Upstream Discharge Hydrographs Using Inverse
Implicit Scheme with Different Canal Lengths.



Mansoura Engineering Journal, {MEJ), Vol. 27, No. 4, December 2002.

22

2.0 E P - n,,

18 F ‘_,.e"“ EEETE Langth 2.5km |,
E E o Length 5km .,
FR: - - -= - Langth10km —
& 3
314 «  Downstream
512 ¢ .
2k .,

10 kb . L .

s . S

08

4 A X A 1 N i N 1

0.8

Time (sec)

Fig. 15. Computed Upstream WaterDepth Hydrographs Using Inverse
Implicit Scheme with Different Canal Lengths.

0.0 50000 10000.0 150000 20000.0 25000 0

16.0 —
s Slope 0 001
14.0 +  Slope 0.0001
12.0 #  Slope 0.00001
E Demand
& 100
E a0
©
2 80
2
g 4.0
B 20
0.0
2.0 . N ! . ' . . ' . .
0.0 5000.0 100000 150000 20000.0 25000 0

Time (sec})

Fig. 16. Computed Upstream Discharge Hydrographs Using Inverse Implicit
Scheme with Different Bed Channel Slopes.
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MODEL APPLICATION TO NON-PRISMATIC CHANNEL

The inverse implicit finite difference scheme was applied to a reach of El-Mansouria canal
between Meit-Ghamer and Sanayat regulator. The length of this reach is /8 km, the cross
section spacing is 2.0 fem, the channel bed slope is 5.3 e¢m/m, and the shape of the cross
section is irregular [9]. At the downstream section, the discharge increases from 30 m’/sec lo
55 m’/sec in one hour, it remains at 35 m’/sec for two hours, then decreases to 50 m’/sec in one
hour (demand line in Fig.20). The space interval Ax =2000 m, the time interval Ar=600 sec,
the weighting coefficient ¢ = [.0, and the weighting coefficient &= 0.6, were used in the
computations. The computed upstream discharge hydrograph is illustrated in Fig. 20. The
damping effect of the finite difference Preissmann scheme is visible as shown in the computed
upstream hydrograph due to the mild slope of the canal, Fig. 20. The computed upstream
discharge hydrograph, when used as upstream boundary conditions in the routing problem of
El-Mansouria canal, reproduced downstream discharge hydrograph closer to what is expected
as shown in Fig, 20.

CONCLUSIONS

Two finite difference algorithms for regulating unsteady flow in open channel have been
presented. The first one is the backward operation explicit method and the other is the inverse
implicit finite difference method. The inverse implicit scheme was tested with the following
parameters: the space interval Ax, the time interval Atf, the weighting coefficient ¢, and the

weighting coefficient 8

The computed results, using the inverse implicit scheme, show small oscillation during
both of the increasing and decreasing of the flow especially with the small space interval. The
accuracy of computed results increases with decreasing of time interval. The oscillations of the
computed upstream hydrographs are damped as the weighting coefficient ¢ increases from 0.3
to [.0. The oscillation of the computed upstream hydrographs during both of the increasing and
decreasing of the flow rate is damped when & increases from 0.5 to (.8, then the oscillations
spread along the solution as @ increases from 3.8 to .0,

The length of the channel doesn’t affect the oscillations of the computed upstream
hydrographs obtained with the inverse implicit scheme . The computed upstream hydrographs
shift more to the left as the channel length increases to provide the same downstream flow
pattern.

The effect of channel slope on the computed upstream hydrographs with the inverse
implicit scheme was tested. The damping effect of the finite difference Preissmann scheme is
more visible as the bed slope of the channel becomes milder.

The effect of Manning’s roughness coefficient on the computation of upstream
hydrographs was tested. The computed upstream discharge hydrograph shifis to the left as the
Manning’s roughness coefficient increases to provide the same downstream flow pattern. The
computed upstream water depth hydrograph shifts upward and to the left as the Manning’s
roughness coefficient increases.

The computed results using the inverse implicit scheme was more accurate and show less
oscitlation than that obtained using the backward operation explicit method for all the cases of
numerical tests. All the inverse solutions, when used as input to a routing model, produced
downstream flow hydrographs very close to the required demand hydrographs,
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NOTATION

The following symbols are used in this paper:

= wetted cross-sectional area;
= wetted top width;

= general function,

= pgravitational constant;

= cross-section index;

= time-level index; Manning’s coefficient;
discharge (through A4);

= bottom slope of the channel;
friction slope;

time;

= space;

depth of flow

W = time interval;
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X = spacc interval;

= a weighting coefficient for distributing terms in space; and

= a weighting coefficient for distributing terms in time.



