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ABSTRACT: The limiting value of the stress-concenkration factor at the edge of a large
hole in 8 tensile strip es the hole diameter, a, spproaches the strip width, w |, has
been investigated by many researchers, They made use of seversl theoretical, experimental
and numerical technigues. There are Lwo diFfBrPnt solutions for the value @f the stress
concentration factor based on the net stress, They are: = 1 and k = 2. for
this paper, the plubjem ig snelyzed by the boundgry element me[hud A cnmplv?r set of
models with a/w = 0.4-0.99 is analyzed. The results indicate that the stress concentr-
ation factor is near two.

INTRODUCTION

The problem of determining the limiting velue of the stresa concentration factor
in a tensile strip with a large central hole, as the hole diameter approaches the strip
width, has attracted the interest of many researchers. Theoretical, exparimental snd
numPrLcal techniques (1-13) were applied ta investigate the problem {t is interesting
to note that a very good agreement is observed between the results of these studies up
to the value of a/w = 0.6, where w is the strip width and, a, is the hole dismeter. On
the other hend, as a/w increases beyond 0.6 up to 1, the agreement ended and the
limiting value of the stress concentration factor as a/w approaches oe varies between
one and two.

Enormous difficulties have faced the experimental modelling of the strip because
of the narrowness of the strip at the minimum section, such as edqe effects, imperfect-
ions in fabrication of the model, large deformations effects, etc. The boundary element
technique can model the strip more efficiently than any other domain techinque. Due to
symmetry of the strip only one quarter of the strip is considered with the necessary
boundary conditions as illustrated in Figure (1}. Two dimensional elastic snalyses by
using the boundary element method with different a/w ratio ranging between 0.3 and 0.9%
are carried out. The results are presented and analysed, Conclusions are presented.

THE STRESS CONCENTRATLON FACTOR-DEFINITIONS

Two Lypes of stress concentration factor are used in the literature dealing with
plates having holes as shown in Figure (1). They are:
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where:
ktg = stress concentration factor based on gross stress.
Inax = mgximum stress at edge of Lhe hole.

o applied stress, distant from hole.
ktn = stress concentretion Mactor based on net (nominal) stress.
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9om = nominsl (net) stress.
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FI0. | SCHEMATIC OF THE TENIWLE STRIF WITH CENTHRAL HOLE.
Combining (1) & (2) and (3) one gets
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Similarly, a factor Ktn min  which rélates the minmum stress to applied

strese can bDe defined as

" ~ 9min
tn min ~ o

Reference in this paper 18 made to both K and K
tn tn min.

LITERATURE REVIEW

As mentioned earlier, three different approaches have been used to
investigate the preblem of clreular hole {n a thin plare. They are :
thecretical, experimental, and numenical techniques.

THECRETICAL ANALYSIS

The case of a circular hole Ln an infinite plate was solved by
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Kirach [1]- He concluded that the atress concentratlien factor equals 3.
Howlend [ 2] has spplied a gerles solution for the cases of —/— up to 0.5
to obtain K n' Howland results were ugsed later to cal{brate most of the
experlmentaf results as well as the numerical techniques results. Timos-
henko [3], treated the problem theoretically and concluded that for the
case of infinfte plate with stress applying at the ends stress concent-
ration factor lsequal te 3 .

EXPERIMENTAL ANALYSIS

Two maln experimental techniques were used to ilavestigate the
problem, fi.e., photoelastic gnalysils and testing of a ateel model and
analysing the messured straias.

The results of the photoelastic analysis are again not Ln agreement.
Coker and Filon (4], noted that as —— approaches one, the stress concen-
tration factor approaches 2., The same result 1s obtained by Wahl and
Beeuwkea [5], Koiter (6] and Heywood [7). On the other hand, Hennig's
results indicated a trend towacrds a llwmiting value equal to one [&].

Wahl and Beeuwkees [5] noting the difficulry in investigating this "thin
ligament" vreglon photoelastically, made a3 steel model 4.125 Lln-wide with

a & in-dilameter circular hole ( 3 = 0.97). By means of strain measurments
they obtained K = 1.92, but they believed that for very small deformations
the K_ value would be higher. They stated that "in case the hole diameter
so closely approaches the width of the bar that the minimum sectlon becomes
an infinitely thia filawent, then for any flnite deformation, this fillament
may move inward sufficlently to allow for a uniform stress distribution,
thus giving X_ = 1. For infinltely small deformations relative to the
thickneas of Eﬂia filament, however, K_ may still be equal to 2. They not-
ed that the steel model test indicated that the curve does not drop down
to unity as fast as would appear from certain photoelastic tests.

They noted that the diffecence between ofE for steel model and ( “g_)
for photoelastic model i{a quite large which affected the magnitude eof the
inward movement. This caused that Kt would not drop to one for the steel
model.

Belie and appl (9] empolyed a singular Lntegral method of numerical
analysle of plane-elasticity problems to obtain an approwimate elasticicy
solutions for the proplem. The method was a stress-boundary-value coll-
ocation method in which equilibrium and compatibility conditions are satig-
fied at discrete polnts argund the boundary. Using this technique and
photoelastic analysls for—%r ranging between 0.1 & .99 they concluded that
Ktn approaches one as_the ratio for afw approaches z value of one.

Rlesen and Spiering [10) applied a point-matching techalque which
combines the collocation method with the method of lcast sguares to cbtaln
the numerlcal soglution for stresses and dlgplacements of plane elastostatic
problems. The technique szatisfies the equilibrium and compatibility cond-
itions in the reglon by a number of functlion3, each {9 multiplied by an
unknown coefficlent. The techinque enabled them to compute the dtress
diatribution in inter-boundary and interior points which made it possible
for them to check the assumption made by Ketter of a linear gtregs distrib-
ution through the height of the ligameat when *%— approaches one.
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They concluded that the Kolter's assumption ls admissible. Also,
they perferredphotoelastic snalysls of the problem. Their conclustan
was that the stress concentratlen factoer tends to two when afw tepds
to cne. On the contrary Parka and Mendoza [11}, after conducting a
photoelaatic fuveatigation have concluded that the limiting value of
K 1o tvo.

HUOHERICAL ANALYSIS

As stated earller, different numerical techniquea have been uased
to invesigate the limiting value of X . These include the approxim-
ate elasticity sclutions adopted by B&Tie and Appl (9] and a peint
matching technique used by Riesen and Spiering [10].

The Finlte elements technique was firast used by Fuehring [12] to
obtain L for the limlting case of tensile strip with circular hole.

Fuehring empolyed a mesh generating program which enabled him to adjust
the mesh and speed wp the convergence of the results. Fuehring conclu-
ded that Ktn tends' to two ag _ 2 tends Lo one.

w

Chong and Pinter [13} have applied the finite eslement method to
tnvestigate the 1imiting case. They employed two dimensional rect-
angular elements. Seven models with different —3— ratlos were studied
with the length of the strip kept at a minimum of seven times the hole
diameter in order Lo ensure that a constant stress field would develop
cutaide the stresas field produced around the hole. They noted that the
accuracy of the finite element method iz a function of the mesh density
of the models used. They noted a strong tendency feor a limiting value
of Ktn that {3 less than twe, but not approaching one and they conclud-

ed that K tends to 1.63 as 2 tends o 1.
tn w

Te the authors best knowledge, the boundary =lement technigue has
not been applied to thie problem before.

THE BOURDARY ELEMENT TECHNIQUE

The boundary element method (BEM} is based upon classical integral
eguation formilation of the boundary value problemsz. The (BEM) has been
developed recently to the extent it becomes a poweriul general purpose
procedure for obtalning numerical results to many englneering problems.

The full formularinn of the two dimensional linearly elastic problem can be
found in several referances [14, lg]. However, a brief development i3
presented next for the sake ¢f completensas.

The 2D domain f?illustrated in Fig. {(2) is bounded by the houndary
with mixed boundary conditionsy i.e., the partl , of the boundary
has  prescribed dlaplacement boundhry conditions while on the remaining.

My

meune (el Domain n



Mansoura Engineering Journal (MEJ) VOL. 12, NO. 2, Dec. 1987 . (. 80

portion of the boundary tractlon boundary condilions are prescribed.
The displacement constraint are

I = 0 Oﬂrl ............... (72 - a)

and the traction conditlons are

Py =% M T B en Ty et ae e eanaaa {7 - b)
where

nj i3 the out-ward normal to the boundary.

13 the prescribed tractions on rz

4

the prescribed displacement on Tl

and r =T T N (7 - ¢)

The reciprocal work theorem can be stated as follows:If two dlstince

elastic equilibriun states (bt \ tf , uf), (bi' t, ui) exist

in the reglon 1 bounded by the surface ' then the work done by the forces
of the first system {*) on the displacements of rhe second is equal to
the work done by the forces of the second system on the displacements of
the first (*¥}. Thus

* o =
45‘ ti(P) UL(P) ds (P) fnbl‘ (Z)uitz) an{zy =

.5. ti(F] u¥ (P} ds (P) + fnbltz) ui (Z) d0 (Z} e (8

where P Ls a point on T and Z i3 a polnt inf. [If the actual state of
displacements, tractions and bodf forces ls chosen as ( u,, ti' b,) znd
the (*) system as those corresponging to a unit [orce at point S in the

direction tt (P) and ut {P), andmakinguse of the following relations
(14).

t (8) =7 ‘{j (p.skmy (8 Ll veree {9 < a)
ap (P) = Gt*jl (oo mp (8) el (9 - b)
bf (Z) = eI [0/ (9 -~ &)

one obtains

5 Tiﬁ (p,9) u, (p) dr (p) + fn 9 olZ, p)y ui (2) dv (Z)

s e ) S (s,p) dr (5) « J b (2} Gx (z,p) dat (2)... (10-q)
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The second tarm in the left hand side con be simpllfied as@ ui(P)th’re
=1 in the demain and = 0 outside the domain .

The eqn. can be written aa

uj (P} a fr[ c, (P Gi*jr {P,5) - Ti«; (e,3) ui(a)]

a5 (P) J;_}bi(z) 013« (P,8) daa{s) weuwerncncronnan- (10 - b)

By bringing point P to the boundary 8 -~-} [14]). The eqn. becomes.

+u, (8) = fr[ti(s) 6,x (p.a) - T* {p,s) v (p)}

] J i}
dr (8) + J;jbi(n) 3 L+ veena (11 - a)
where :-
-1 ar
- —_ f{1-2v)s,  » 2r, ,
le (p,s) EETIRS ( on i L j}
-(l—Zv)(r,i Nyt Ty “i) ] i e e e e {11 - b}
1
z — -4 -
Gt (P,3) TTTRNYS 3 u)atj 0y r.j) ............ (11 - o)
e, = wunil vector in dlrection L . ..i..iieiinans (il - d)
ar
rel r’ilni’ ............................... (11 ~ e)
r = (ri ri] 1, b rnenararasrEra et aanianann (11 - £)
T X (q) - xi(S), ............................... (11 - g7
r
ar . 1 .
©iy :--a;]. {q) "= R T {11 - h)

Equation (11) Ls the starting equatior for the boundacy element
technique.

BOUNDARY ELEMENT DISCRETIZATION

Neglecting the effect of body forces, equation (ll-a)for the two dim-
enslonal case with the golnt "S" as a boundary peoint on a smooth boundary
becomes,
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* 3 =
}ul (8 + fruj (q) Pij (s,9) dl
fr PJ(Q) ui‘j' (5,9) 4T, £=1,2 (..o 12)
In order to evaluate the integral contained in egquation (12), 1t

is assumed that the boundary of the domain N i{s divided into ¥ hound-
ary clementoas shown {n Fig.{(3). Using the constant element methead,

8z

the nodes are taken to be at the middle of each element. The tractions

and displacements ace assumed to be constant allover the stratght
elemeat of the boundary.

Hence equation (12) becomea

H
Yu, (8) + ¢ u?
q j

i =1 5
b
% pj‘ Lo (5.0) dr (g L=1,20 e, (13)
q=1 q
In which,
il is the number of boundary elements {(total number of nodes).
rq denotes the surface of the qth boundary element.
u? and p? are the values of the displacements »nd tractions reape-f-
ively in the direction ")" at polnt "q'.
s =), 2,3, ... N  bounds:y segments
Adopting the following definiticns
K £o0" ar (14)
g = 4T
4 G Lo W dr 1
an ij = I"j L ( 5)
Equacfon (13} ceduces to the followlng .nru
[ U v
Cu + I u = I G, B e (16)
j=1 137y =1 13 )

Titd= equatlon relates the value of u  at midnode "i" wit': the
valuey of u's and p's at all the nodes on the boundary, includtng {.

Pefine Eurther,

Hij = Hij incase L 4 0§ oo, (17}
H = H,, s Ci in case 4+ = J iiiiiiiiiiieieian... (18}

L L]
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Hence, equation (16) becomes,

N Nc
I [ u, = I e (19)
i
R T SRS I
1]
The integrals fozr HLj and G'j can be calculated using the 4-point
Gauss quadrature formula.

SYSTEM QOF EQUATILIONS

Numerical evaluation of cqn. ()9) will produce a syslem of equat-
ions for the node under consideration. BRepeating for al) the nodes gives
g final system of equations thar ¢an be writlten as

HU = GP ..uiucnanws ereanas et et ceasemarsr-reeearaenaaean 2o

in which U are the displacements; P are the values that the distributed
fractions take at all the boundary nodes.

It {3 important to point our that the dlagonal coefficients in the
H matrix can be obtalned by applying rigid body condition. If unit rigid
body displacements are assumed in all directions, eqn. (20) becomes.

HU = 0 it iunimrcmeunneasanasasrsrannessasrinsrmernaanencscnans (21)
c

Thus, the subdatrices, or the diagonal, of H can be dertermined. HNote

that 1f M wvalues of displacements and N - M vilues of tractions are a
known, therefore,one has a set of M unknowns i{n equation (20)

Reorderlng the eguatlons, 1.e., with the unknowns on the left-hand side

vactor X, we obtain.

ANALYSIS AND RESULTS

As mentloned earlier, the boundary element analysis of the problem
of a tensile strip with large hole was carried out for one quarter of
the strip only because of aymmetry. Fig. (3) Lllustrates a typical
boundary element mesh Eor the strip. The constant element la used in which
both the traction and displacement are uniformlly distributed over the
element-Two points are worth noting in this typical mesh. They are, (1)
the length of the mesh is taken at least ten times the width of the strip
to ensure the uniformity of the stress field away from the hole, (2) the
size of the elements is decreased at the reglan of the minimum section
and subsequently the number of elements is increased in the reglon in
order to improve the accuracy of representing the vapidly changing atress
Field near the minimum section. The boundary elementsare needed only on
the boundary, fewer elements are needed to model the strip than those
needed to model it by the finite element where the domain is divided into
elements. Thls enables one to use finer boundary element mesh in order
to.achiéve bekter results.

The maln objective of this study is_to determine the stress concen-
tration factor for the limiting case as—:r-approachesone for the strip
with central hole. Two dimensional plane stress analyses by the bound-
ary element techalque is carried out. Severtal models with different
ratlos ranging between 0.3 and 0.99 are studied under the action of
direct tenslon. The results are reported and analysed below.
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Filg (4) shows the typical stress diastribution aver the minimum.
aection for the case of J%r = 0.4, In table (1) the resulting Ktn

values obtained in the present study Ls compared with those reported
by Chang [13). It can be observed from table (1) that K., values
obtained by the boundary element agreed very Wwell with other

results up Lo %F = 0.7, It is observed that the stress distribution
across the minimum section is non linear up top— = 0.7 with a very
distinctive shape made up of decreasting and increaaing slopes.

However, a tendency of the stress distribution to become linear appears

as —/— lincreases. As increases beyond 0.9, fluctuation of the
atresses is observed In the middle part of the minimum cross section
while the outer part becomes flatter and tends to be linear. At a/y=0.99,
the slopes of the stress distribution curves at both the outer edge and
_the hole edge are very close to each other and almost linear as shown in
Fig {5). This stress distribution {s similar to that of the pure bend-
tng case. Lt also confirms the results reported by Appl [9] and Chang
f13].

Fig. (6) i{llustrates the deformed shape of the astrlp for the case
of —] = 0,99. It i3 interesting to note that the vertical deformation
across the minimum section is quite large and {t seems to be that cons-
ldering only the small deformations provides non reallstic representation
of the problem. The general deformed shape of the strip shown in Fig.
(6) is simllar to that obtaind by the finite element method and reported by
Fuehring [12].

The stress dlstribution at —%r = 0.99 indicatea a value of K

fn max
equal to 2,23, Fig. (7) illustrates the K, values for different afw

values obtained Ln the present work and those obtained by other reseach-
ers. It can be predicted from Fig. (7) rthat K is decreasing as —
tncreases from 0.99 to 1. It seems to be reasonable to conclude that
is approaching 2 a% a/w approaches one . .

n

CONCLUSION

The boundary element analyses of the strip with large central hale
reported here justifies the conalusion thar ¥ {s tending to the value
of two a3 afw ils tending to one. It ts also evident that a more accur-
ate stress concentration value can be obtained tE the non lineacity of
both the geometery and materlals {a considered .
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Table (1)

Comparsion of Results obtained by boundary elements and
Fin{te elememts .

Present Study Chang & Pinter
a Boundary element analyses|Finite element analyses
w . L]
Ktn Ktn min Kl:n l(l:n min
0.3 2.135 0.64 2.41 0.65
0.4 2.13 0.51 2.230 0.53
0.5 2,25 0.458 2.21 0.458
0.6 3.20 0.266 R, A N.A
0.7 2.30 0.35 2.15 0.29
0.8 1.33 0.3 2.06 0.28
0.9 1.99 0.566 1.95 0.31
0.99 2.25 0.58 1.63 0.5%
303 202r2em 24 3 22 2 o0 19 L i '
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