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ABSTRACT 

This study addresses the cell formation problem m group technology, 
through a comparison of the solutions pro~iided by two algorithms. The iirst 
one is based on the ideas of Bond Energy formulation (Matching Algorithm 
(MA)), and the second is based on Comtnonallty Scores analysis (Linear 
Cell Clustering Algorithm (LCCA)). The relative performance of MA and 
LCCA was investigated under three types of Datasets. The research applied 
Cell Generation, Percentage of Exceptions am1 Grouping Efficiency as 
performance measures. The results of the exptximents indicate that, in 
general, MA is superior to LCCA in terms of Cell Generation and 
Percentage of Exceptions measures, while LCCA scores higher values of 
Grouping Efficiency. 

1. Introduction 

The cell formation problem in Group Technology (GT) has been 
addressed by several studies by many researchas. This problem which is 
embedded in a larger cell design process is very important indeed, since it 
inhlences the physical layout of the system, and thus influences the 
scheduling .and control policies of the system. Numerous techniques for 
solving this problem are available in the literature, where a large number of 
cell formation algorithms, belonging to various approaches, have been 
developed over the last three decades to solve the machine - part grouping 
problem 

Manuscript received from Dr: Omer Ahmed El- Tohami at: 121 81 1997, 
Accepted at: 261 81 1997, pp. 39-55, 
Engineering research bulletin, Vol. 20, No. 3, 199", 
Menoufiya University, Faculty of Engineering, 
Shebin El-Kom, Egypt, ISSN. 1 1 10-1 180. 



Despite the existence of several procedures for solving the cell 
formation problem, still missing fiom the literature are studies directed to 
the problem of selecting among these numerous procedures. Hence, 
practitioners are still faced with the problem of  electing the appropriate 
cell formation algorithm that can be applied to their specific environments. 
Here, this study is an attempt to bridge this gap i a  cellular manufacturing 
(CM) systems studies by providing a comparison of two promising cell 
formation algorithms using cell generation, Percentage of Exceptions, and 
Grouping Efficiency as measures to assess the "goodness" of the solutions 
provided by each algorithm. 

The problem of partitioning a manufacturing system into machine 
groups and the related problem of partitioning the set of manufactured 
parts into part findies, according to the routing sheet information, is 
known as the cell formation problem. In its simplest form it can be' 
formulated as a matrix diagonalization problem, where the incident matrix 
(aij) (explained below) is transformed intc a block diagonal form such that 
mutually exclusive part families and thek correq,onding machine groups 
emerge. Actually, the cell formation problem involves three major 
interrelated issues: the identification ofpart families, the identification of 
machine groups, and the allocation s f  part hmilies to machine groups. 
Block diagonalization of the incidence matrix is the first and most 
important step towards the application of GT. 

2. Cell Formation Almrithms 

Cell formation means the identification of a h d y  of parts as being 
suitable for manufacture on a specific group of machines. There are several 
approaches that have been attempted to solve this problem, but only few 
researchers have attempted to develop fiamewo~rks for the cell formation 
process. Based on a comprehensive literature survey, the following two cell 
formation algorithms are selected to be tested and compared: 

(1) Matching Algorithm (MA) (Bhat & Haupt, 1976); 

(2 )  Linear Cell Clustering Algorithm (LCCA) (Wei & Kern, 1989). 

It has to be mentioned that MA is always able to lind a total division into 
groups, which complete all the parts they make, if such a configuration 
exists, ie. it is able to form a completely cellular layout if one exists, which 
is not the case for LCCA. In addition, the two algorithms, for their 
operations, need nothing more than a machine - part route matrix. 

On the other hand, it is n ~ t e d  that the two algorithms selected for 
testing here could be programmed on a comput.er, which is an essential 



feature since many real applioations may be too lar,ge for manual approaches. 
Now, each of the tested algorithms will be considered in detail in the 
following sections. 

2.1 Matchine Akorithm MA) 

Bhat and Waupt (1976) proposed a clustering algorithm based on the 
ideas underlying the Bond Energy Algorithm (BEA) ofMcCormick et al 
(1972) and the shortest Spanning Path Algorithmof Slagle et al. (1975). 
According to the taxonomic t ime  suggested by Offodile et a1.(1994), the 
model structure for this algorithm codd be classified as having a matrix 
formulation of the Array-Based type, and its solution approach is also an 
Array-Based approach (Bond energy). It is noted &at Array-Based methods 
group machines and parts without applying a similarity measure. Rows and 
columns of the incidence matrix are rearranged until a diagonal pattern of 
mutually separable clusters emerges. kfa~hine - part groups are form4 
sirmrftaneously. The strength of the proposed scheme is in its use ofthe 
special property of matrix B = A*AT. It reduces &e required computations 
by a factor of (n) for row ordering and (m) for column ordering of an mxn 
matrix (A). This algorifhm , &ch is call :d the Matching Algorithm (MA), 
uses integer arithmetic similar to the methods of the BEA and the Shortest 
Spanning Algorithm The MA is a general cluster analysis technique, and it 
is not specially developed to solve the part fhi ly  / machine group formation 
problem. The MA is based on the fact that the formation of clusters fiom an 
unorganised data array can rest on a simple rule which reckons with the 
number of matchings of the zero and nonzero entries between two parallel 
lines (rows and cohms) of the array. Depending on the specific problem 
that gives rise to a data array, one could M e r  assign some weightings for 
the zero - nonzero structure in order to realise clusters that are germane to 
the problem In fact, these ideas are implicit in the BEA and the sboaest 
path algorithm, but the manner in which the MA has been conceptualised 
does make a significant difference to cluster analysis. The principal 
advantage as claimed by the authors is that the WS stems tiom the fict that 
when a row is rearranged, the change in the numljer of matchings need not 
be recomputed for each possible arrangement, instead only the change in d, - 
which is given by : 

m-1 
sum d, = 2 bi, i + 1 , where; b = A * A ~  - is evaluated. 

i=1 

Furthermore, A * is obtained by merely comparing and counting and not 
by matrix multiplication, so the computation of A*AT is equal to the 
computation of matchings among the rows. The MA has a computational 
complexity of 0(m2+&). 



2.2 Linear Cell Clusterhe Aborithm (LCCA) 

Wei and Kern (1989) suggested an algorithm which is based on the 
calculation of a commonality score which indicates the simhity in the way 
two machines are used in the shop to manuhcture the products. The 
algorithm generates consistent machine groupings regardless ofthe initial 
order of the input data. The clustering process allows sensitivity analysis of 
the solution, introducing various constraints 011 the characteristics ofthe 
machine clusters, without requiring repetition of major portions of the 
procedure. The algorithm has a linear computational complexity. The 
commonality score not only recognises the parts on which two machines do 
work, but also the parts on which the machines both do not work. The 
algorithm can always create the maximum nmlber of cells dictated by the 
commonality scores. The similarity score uzid by the authors is an 
adaptation of the similarity score that Kuslak (1987) applied to the 
clustering problem, Kusiak's f o d t i o j ~  produces a (P x P) matrix, vvhile 
commonality scores produce a (M x M) matrix, and since the latter matrix is 
smaller, it therefore requires (in most cases) less processing time to cluster. 
Kusiak (1987) defined a similarity score for part pair i and j as: 

Sij=Z 6(a,, ajk) 

Where 6(aik, a- ) = (1 if a& = qk; 0 otherwise). Kusiak 
~k 

bad one condition for adjusting his shnilariry score: if a* = ajk then add 

one point to the score. But, the commonality score includes two conditions 
for adjusting the similarity score: 

(1) if a& = ajk = 1, then add @ - 1) points to the commonality score Cij; 

(2) $aik = ajk = 0, then add one pomt to the conunonality score Cij. 

In this way, only one case adds zero points to Cij: if a& = ajk, which 
means that one of the machines is used to 138atlufr~cture part k, and the other 
is not. 

In summary, 

if aik = a j k  = 1 

if aik = ajk = 0 

if aik y': a jk 
Once the commonality scores have been c:alculated, the scores must 

be compared and the machines clustered accordingly. The worst-case 
complexity for the LCCA process is O(mlog m + m212). 



3. General Comments 

According to the framework suggested by Wodile et al(1994), the 
model structure for the LCCA could be classsed as having a matrix 
formulation of the Similarity Coefficient - Based type, while its solution 
approach is of the heuristic type.. But, according to the classification 
suggested by Wemmerlov and Hyer (1986), which is more appropriate for 
performing our comparison, we find that: 

MA is a techniques that identifies part families and machine groups 
simultaneously while the LCCA alone belongs to the techniques that identify 
machine groups only. Therefore, there is a need to augment the LCCA with 
an appropriate assignment procedure of another ce.U formation algorithm By 
reviewing previous literature, the followkg was obtained: 

(i) Kitparthi and Suresh (1994) augmented the LCCA by incorporating 
neural network logic for allocating parts, and they called that the 
Augmented Linear Clustering (ALC). Although, the authors showed that the 
ALC algorithm was superior for large datasets, they pointed out that the 
principal limitation with neural network methods, is the category 
proliferation problem. That is, the number of classes identified tends to 
mcrease rapidly when data size is large, and/or when vigilance threshold 
parameter is set at high level. 

(ii) The possible algorithms for augmenting the LCCA were Rank Order 
Clustering algorithm (ROC2) (King and Nakornchai, 1982) and Direct 
Clustering algorithm (DCA) (Chan and Miher, 1982). Any ofthese two 
algorithms could have been used. However, the DCA was found to be more 
suitable for augmentmg the LCCA, because it is simple and effective in 
clustering data directly fi-om any given machinecomponent matrix, and m 
addition it was specifically designed for computer use and it can easily deal 
with large amounts of data obtainable in realistic situations. These two latter 
features of the DCA are essential since many reid applications may be too 
large for manual approaches. The JXA is based on progressively 
re@cturing the machinepart matrix by going through it sequentiallyJ 
moving the rows with 'lea-most' positive cells to the top and the cohunns 
with "top-most' positive cells to the left of the matrix. Thus, ifLCCA is 
augmented with the DCA, in relatively few trips the positive cells will be 
squashed toward the diagonal of the matrix and ;a clustered pattern will be 
formed, since by the original LCCA in the first stage ofthe augmented 
algorithm, the columns (machines) wi-hl already be in the right order. 
Therefore, m this study the LCCA is augmented with the part assignment 
procedure of the DCA, and hence the solutions 01)tained by this augmented 
form ofthe LCCA can be directly compared with the solutions generated by 
the other tested algorithms. In the rest of this study we refer to this 
augmented form of the LCCA briefly as LCCA. 



4. Computer Promams 

FORTRAN language (Version 5.1) was; used to code all the tested 
algorithms, and they were executed on an AS1 486DX-33 personal 
computer (PAT 48 AV 486 VLBus/ISA System Board). For running any of 
these programs the user needs to input a part .. machine incidence matrix, 
where a value of one m row i and cohunn j means that the part i is processed 
on machine j, while a zero indicates that machine j is not invoked m the 
processing of part i. Also, the user needs to specifl the number of parts 
(rows) as well as the number of machines ( c o h ~ s ) .  

5. Dataset Generation 

The two algorithms were tested on one route sheet dataset fiom each of the 
following three data patterns: 

(1) Block Diagonal (BD) pattern: where partlmachine groups lie in 
separately defined blocks along the diagonal of the route sheet data matrix. 

(2) Block Diagonal with Low Intercell Tran~fers (BDL) pattern: in this 
dataset, approximately 10% of the parts require routing to more than one 
cell. 

(3) Block Diagonal with Medium Intercell T~~ansfers (BDIM) pattern: in 
this dataset, approximately 20% of the parts require routing to more than 
one cell. 

The BD pattern dataset (see Appendix A) is based on the problem given by 
Morris (1988). 

Then the BDIL and the BD/M patterns were obtained fiom this BD 
pattern by m0-g the routings of some of the parts in order to obtain 
about 10% and 20% exceptional parts, respectively. These datasets were 
randomised, then the disguised datasets were clustered by each of the tested 
algorithms, and the original structures sought to be rec~vered. 

6. Akorithms Com~arison Measures 

The following measures were cmsidered to compare the alternative 
clustering algorithms by assessing the "goodness!' of the solutions provided 
by each algorithm: 

6.1 Cell Generation 

By this measure it is meant to check the ability of each algorithm to 
produce BD solutions when they exist, and also their ability to correctly 
iden* the cells that did not contain exceptions in the cases of BDIL and 
BDM patterns. 



6.2 Percentage of Exceotions 

Is defined as the ratio of the parts requiring processing in more than 
one cell (exceptional parts) to the total number of pa.&, @en as a 
percentage. It is noted that this measure is dilFerently defined in other 
studies (Shafer and Rogers (Part II), 1993). 

6 3  Efficiencv Measures 

The Grouping Efficiency (G.E.) as suggested by Chandrasekharan 
and Rajagopalan (1986b) will be used in this study. The concept of G.E. is 
based on two parameters: within - group utilisation and intercell movement. 
From the matrix point of view, the concen-ration of non-zero elements in the 
diagonal submatrices rders to utilisation, and the presence of such elements 
outside the diagonal submatrices represents intercell movements. G.E. is 
expressed as a weighted average of two efficiencie!; h l  and h2 as follows: 

G.E. = q hl+ ( 1 - q) h2 

Where: 

hl = number of non-zero elements in the diagonal blocks + total number of 

elements in the diagonal blocks. 

and h2 = number of zeros in the off - diagonal blocks + total number of 

elements m the off-diagonal blocks. 

hl represents utilisation efficiency and hE represents mtercell movements 

efficiency. 

G.E. satisfies the basic requirements of non-dimensionality7 non-negativity 
and zero - to - one range. The weighting factor (q) makes it possible to alter 

' the emphasis between utilisation and intercell movement, dQending on the 
specific requiremknts of the given problem 

The alternative algorithms in this study were compared for three values of q 
: 0.2, 0.5, and 0.8. Harhalkis et al. (1990) have suggested a similar 
evaluation criteria, where their efficiacy conzept is based on three 
efficiencies: Global Efficiency, Group Efficiency and Group Technology 
Efficiency. It is noted that these three efficiencies are not entirely 
independent, and it seems more appropriate to use . the G.E. measure as 
defiued above. 



It is worth mentioning that, in this study the computational time measure is 
not applied due to the following: 

(1) the execution times may not be of importance, since cell formation is 
a design exercise that may be required once, and it will not be executed on a 
day-to-day basis; 

(ii) the four tested algorithms, as appeared during the pilot runs are very 
fast indeed, and this also was supported by results obtainedmprevious 
literature concerning the time requirements for these algorithms. 

7. Discussion and Analvsis of Clustering Solutions Obtained bv the 
Algorithms 

7.1 Eaaerimental Results 

The cell formation results, for each of the tested algorithms using 3 
input datasets : Dataset of BD pattern, Dataset of BD/L pattern, and Dataset 
of BD/M pattern were obtained as padmachine chlsters. These results were 
then used to compare the solutions generated Ey the tested algorithms in 
terms of their ability to generate cells, percentage of exceptions, and G.E. 
measure for three levels of q (0.2, 0.5, and 0.8). Table 1.1 showsthe 
number of cells together with the Percentage ofExceptions given by the 
tested algorithms under the 3 Datasets. Table 1.2 presents the values of the 
within-cell utilisation parameter (hl) and intercell movements parameter 
(h2). Tables 1.3 through 1.5 summarise the results obtained forthe G.E. 
measure for the two tested algorithms, under 3 Datasets, under three levels 
of the value of q. The next sections present the results of these tests together 
with their discussion and analysis, and a number of important conclusions 
were drawn. 

7.2 Results of Cell Generation and Percentwe of Exce~tions 

(1) Dataset 1 : (BD pattern) 

(I) MA algorithm, produced a pure block sohtion, but the LCCA algorithm 
failed to produce a pure block diagonal solution, ie. the solution obtained 
for this Dataset contained exceptional parts, where this solution contains a 
higher number of cells when compared so the solution offered by the MA 
algorithm 

It &odd be noted that the number of cells (or clusters) obtained by the 
LCCA are the,maximum number of cells possiile by this algorithm, without 
having any constraints on the number of cells or alternatively the cell size. If 
we assume that the numbers of cells obtained by the solution offered by the 
MA algorithm are the desired numbers of cells, Ihe LCCA will produce a 
solution that have much lower percentages of Exceptions than those shown 



in Table 1.1. This shows the flem'bility of the LCCA, which is obtained by 
the joining operations of the algo&b, based on selecting the highest 
commonality score that has not yet been considered in the clustering 
process. 

(ii) The MA algorithm produced a pure block solution - but not block 
diagonal solution - where the clusters were interspersed above, below and 
along the diagonal. For the LCCA, although the clusters start fiomthe 
north-west and end at the south-east diagonal, the clusters are still 
interspersed above, below and along the diagonal. 

(iii) The MA algorithm obtained a solution with zero Percentage of 
Exceptions, while the LCCA obtained a solution with 52.5% Percentage of 
Exceptions. 

(2) 'Dataset 2 : (BDL Pattern) 

The MA algoPithm generally ranked better than LCCA algorithm 
with respect to the Percentage of Exceptions measure. The LCCA produced 
the highest percentages of Exceptions when considering its initial solution. 
But, as mentioned before, iffewer cells were desired, the LCCA would be 
expected to give a lower percentages of Exceptions. 

(3) Dataset 3 : (BDM Pattern) 

Again, the high percentages of Exceptions obtained by the LCCA 
were due to the high number of cells created by this algorithm. 

Finally, it Should be noted that the MA algorithm, is sensitive to the 
initial arrangement of the data& matrix, while the LCCA algorithm is not. 

7.3 Results of Grouuine Efficiencv Measure 

(i) It was apparent fiom Tables 1.3 tlqough I .5, that the LCCA scored 
the highest values of G.E. This was true with the highest v&e of (0.8) ie. 
when much emphasis is being placed on the witlrin - cell &tion factor, 
and it was also true when more weight was gtven to the frequency of 
intercell movements parameter ie: at q = 0.2. Thus, whatever the value 
selected for q, ihe LCCA attained, generally and caasistently, the best values 
of G.E. when compared to the MA algorithm. 

(ii) The relative performance of the two algorithms tested was not 
affeded by the value of q for all the datasets. 



8. Conclusions and Recommendations for ]Future Reasearch 

(1) Generally, the MA algorithin outperformed the other algorithm in the 
Percentage of Exceptions measure i.e. it has the lowest values witk respect 
to this measure. 

(2) Only the MA algorithm was able to identifl- the existence s f  a (BD) 
solution (Dataset I), but the LCCA was not succe:ssfd in doing so. 

(3) Irrespective of the value chosen for q, the LCCA, generally and 
consistently, outperformed the other tested algorithm, under all the datasets, 
with respect to the G.E. measure. 

(4) The form used here in this research for thc LCCA is a modified one, 
since the original algorithm just gives the group of machines for each cell, 
without identifying the part families associated with each cell. Thus the 
algorithm is successfUIly augmented with the part assignment procedure of 
the DCA . 

(5) The LCCA sometimes Med to identify the originally specified 
clusters, but this is not a problem, sintie this if: generally associated with 
using the algorithm without forcmg any constraints on the number of cells. 
But, generally when the number of cells is decided, the algorithm could 
easily ident;fy the block diagonal solutions. A h ,  it should be known that 
these originally specified clusters are not n e c e s e y  the best solutions. 

For example, with Dataset 1 the LCCA solution has 7 cells, while the 
initial data has a 4 cells (BD) solution. If we then apply the constraint that 
the number of cells is 4, immediately fiom the LCCA solution chart, it can 
bee seen that cell 2 [3,8,ll] should be joined with cell 1 [17,22,20,25,2], 
and cell 3 [4,12,16,6] with cell 5 [5,19,14,24], in ofder to obtain a (BD) 
solution, which is exactly the same result when the commonality score 
values are used. Alternatively, without knowing the number of cells that are 
required t'o create a (BD) solution, the cell j o w g  process could continue, 
according to the values of the commonality score, until no exceptional parts 
exist, if originally there exists a BD solution. 

(6) This research serves to bring into focus the utilisation of the MA as a 
promising cell formation algorithm, although i: is a general chstering 
technique, and it was not specially developed to solve the cell formation 
problem Its effectiveness has been demonstrated in the following aspects: 

- It was capable of producing a pure block solution with the (BD) 
pattern of mput Dataset 1; 

- generally, it yielded the lowest- percentage of exceptional parts, when 
compared to the other tested algorithm. 



(7) The findings of this study open many more doom than they close in 
terms of future research directions. An obvious extension of this research is 
to compare the tested algorithms using larger input datasets than the ones 
used in this study, such that they would bear mole resemblance to industry 
realities. This is usefhl in determining which algorithms are amenable for the 
much larger datasets encountered in practice. 

Table 1.1. The number of cells created and the Percenta 
of Exceptions (YO) 

Table 1.2 Values of within - cell utilisation parameter @l)and intercell 
movements parameter (h2.) 

LCCA 

U NO. 

Algorithms 
MA 1 4  

Yo 

52.5 
47.5 
52.5 - 

Table 1.3 Grouping Efficiency (G.E.) 

Dataset 

5 

10 

15 

Pattern 

BD 

BD/L 

BD/M 

MA 
' 

U C A  

0.90 

0.90 0.90 

0.90 0.90 



Table 1.4 Grouping Effkiency (G.E.) values a t  q = 0.5 
I I I I 

Data set Pattern MA 

Table 1.5 Grouping Efficiency (G.E.) values a t  q = 0.8 

Data set Pattern MA 
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An~endix A Datasets 
Al.  Dataset 1: Block Dia~onal Pattern 
(25 Machines & 40 Parts) 
Par 

D O O O O O O O  - 
D O 0 O O O O O  --- 
D O O O O O O O  

O O O O O O O O  
O O O O O O O O  



A2. Dataset 2: Block Diagonal With Low Inter-cell Transfers 
(25 Machines & 40 Parts) 

Machines 
0 0 1 2 1 0 2 2  1 1 1 0 2 0 1 0 1  



A3. Dataset 3: Block Diaponal With Medium Inter-cell Transfers 
(25 Machines & 40 Parts) 




