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SYNOPSIS

This paper describes a general procedure of kineto elasto-
dynamic analysis of cam mechanisms based on the finite element
approach. The present discrete technique can be utilized to prov-
ide various versions of finite element models of planar or spatial
more complicated cam mechanisms. The procedure is introduced by
utilizing the cam operated transfer mechanism found in Koster's
Work(l).

1 = INTRODUCTION

The dynamic analysis of cam mechanisms as prefectly rigid
systems has become increéasingly inadequate, since the necessary
prerequisities for setting up the vibraticn would not be satisf-
ied. To improve the representation of dynamic behavior of a cam
mechanism, various methods have been petforméd such as for example
the methods by Matlhew and Tesar(3), Eiss(%), Bloowm and Radc1ife$®)
There is however a common criticism to the previously mentioned
analysis concerning the indiscrminate modelling technique. In refe-
exence (1), Koster gave a Kineto-elasto-dynamic analysis method
for which the common drawbacks of the mentioned methods can be
avoided, but still Koster's technique is sufficiently applicable
for those simple cam mechanisms with low degrees of freedom and
atill many questions on the modelling of the cam shaft remain.

To permit a closer simulation of the dynamic behaviour of
actual complicated cam mechanisms than was possible with simple
models, the finite element approach has been utilized in the pres=
ent analysis. Since this method (7,8) is an efficient tool for
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cam operated transfer mechanism of figure (2) reptesehtéd by
15 DF finite element model conszsts of a 12«-DF aimulated foll~
_ower set and of a -3-DF. s;mulated Gam aet as .Bhown.

The follower set is modelled by connecting a series of
links and each link may be simulated by one element parform-
ing a typical type of motion such as longitudnal, torsional,
and or fleuxeral. With regard to the topology of the set, the
individualveldﬁenta are meeting at either pin or rigid joints.
"It is of interost to _note that a aerzes of dynam;c models with
lowex degrees of freedom may be genorated by elxmznatxng the
selected number of nodal goneralxzed forces or of nodal’ gene=
ralized coordinatea concerned the simulated follower aet.
EqMLValently the. aize- of maas and stiffness matrzcea are
reduced either by the condonsation of matrices. or‘by the elime
ination of the particular number of rows and columns. These
concepts will be visualized through the reduction of the sim-
ulated follower set to be as derived by Koster {1, 2).

In the moailling'of the flcxiblq cam set, the camghaft is
represented by an assembly of flexural: torsiona%&beams_intaru
connected at a rigid joint where as the cam element, (inertial
element), is assumed to be lumped. Using the conditions of
invariance of the kinetic and potential»eneigios under cooxd-
inate transformation . the mass matrix mg and the stiffness
matrix K, of the e th element shown in figure 1, can be easly
formulated. ’

The formulation of charactéristicﬁuq and Kq“matricas of tha
entire mechanism are then built up by adjoing the characterxstxc
matrices of the cam and of the fallower sets. The adjoing process
is carried out by pre and post multiplication of the element
characteristic matrices by the couplxng matrzx which represents
the compatibility cond;tions through the nodal di-placemants.

In that view the presence of coupl;ng may be ropxeaented Bchemats
atically by a Kinematic couplxng set. (governed by the cam curve
slopé) as found in. reference (1).
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The practical ugse of the proposed method is usually in
need to digital computers, since the higher order of the
characteristic matrices, the better will be the accuracy of
the analysis.

3 ~ THE MODELLING OF THE CAM TRANSFER MECHANISM:

The simulated cam wechanism is conaidered as a combin-
ation of the follower set formed from five structural elem-
ents and of the cam set formed from three elements. Both sets
are coupled by means of the coupler set which is simulated by
2 kinematic mechanism (1,2) as shown in figure (3).

In the uncoupled position of the follower set, the indep-
endent parameters ¢ . (j = 1,2,....,12) are selected as the
generalizad coordinates. In the presence of coupling an
auxiliarly dependent coordinate q* may be also utilized
for simulating the cam action, (the motion machined in the
ca) . .

The generalized coordinates g *j‘ (3 % 1, vessd) are util-
ized for describing the configuration of the rigidly supported
cam set. Hereby the configuration of the simulated mechanism
can be completely described by employing q 3 (3 = 1,2,004,16)
generalized coordinates.

Figure (3) shows that the model of the entire mechanism
consists of three submodels: follower, cam and coupling sets.
In the modelling process the typical element is regarded as
an elastic element, lumped masses and or rigid massless elem-
ents.

3~-1: Modelling of the Follower Set:

Follower set represented by that 12-DF model consists of
the finite elements (1) up to (5) interconnected at two active
pin joints (I, II) and two active rigid joints (III, IV).
Taking into account the compatibility conditions, the loc=
ation of the set of generalized coordinates q f evassss g fz
are selected as shown in figure (4). In the coupled position
of the follower set, The auxiliarly generalized coordinate q¥,
(which is utilized to simulate the cam action) is located at
the proper distance (a) from the passive joint O.
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A typical elementf(e) of mass § is regarded an elastic
element of longitudnal rigidity EA, torsicnal rigidity GJ
and fleuxeral :igid%;y EI, having a uniform cross-sectional

area A across its length l.
matrices can be shown (7,8)
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In figure (5) the elements of ths follower sst arxe
shown seperated. Appropriate displacments are labelled on
each, measured in the local and in the gobal coordinate
systeis. With A= Cos ¢ and M = sin ¢ , a transformation
matrix R _ of the typical element (e), figure (1), may
be defined (6,7).

!'\ M o 0
R - ! z for e = 2.4 N
€ o o A H
[
‘e
and
(—)1 s 0 o o o
0 1 [0} 0 (0]
Re Lol for e = 1.3‘5 .g...(S)
0 0 0 =M A o .
o O O (o} [} 1
- @
The following holds
e = R Yy
md . ..o..(6)
b .
2 ™ Re Yo

Where & and U, are sets of displacements at the two
ends of the element in local and global coordinate aystems as
shown in figures (1) and (5). The invariance of kinetic and
strain energies under coordinate transformation, such ass

1 o ‘ 1 . p .
Te - 2 %e m bﬁ -2 Ue m‘ Ue o.-..oooc(?)
and
1 T 1 Ty (8)
Ve .z SQK SQ -2 e eUe, ssssssese

facilitate the expreasing the elemnt mass and stiffness
matrices of the e th element:
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where S is the number of nodal displacements of the
o'—"’i-‘- element. By the help of the previous eq‘uatioxm. the

symmetric element mass and stiffness matrices measured in
a global system for the all isolated elements shown in
figure (5) may be expressed as.
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In that way the mass and stiffness matrices of the input link (1) can be expressed as:
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where the inertial coefficients kﬁj and the elastic coeff-
icients kij are given in the app endix.

Superimposing the kinetic and strain enexgies of the
five elements shown in figure (5), the total energies may
be expressed, using equations (7) and (8), as

5
. 1 ;T 3

T = T - U U oo.--cu-o.oo-;oo.-.(lZ)
Zl e Z M,

and

5
Ay i 47
V = ; 1 Ve ‘ - z U KuU .....o-a.boo-.oc-.-(l3)

Here the mass M, and stiffness Ku matrices of all elem=-
enta comprising the follower set are derived by locating
the slement matrices of the five elements along the diagonal
in the respective orxder (6). hexe has

- T
Mo~ '["1} e » s Ems] ...............0(145
24x24 ;
and ] :
K, ~ | [x] + « & [k5] _ cesessrsseacsene(lB)
24x24

The relationships between the generalized coordinates
*
q . qf esssensens qu and the nodal dilplacmntl

Ul‘ Uz, sesens U 24 of all elements of the follower set
may be expressed as

4] = B q 0...000-.0-00..00(16)
and . ' . .
U = Bé ,00!.....;00.0...(17)

where B is the connecting matrix of order (24 x 13), which
can be easly deduced according to the compatibility conditions
through out the follower set.

Therefore the mass and stiffness matrices of the follower set
ifi the coupled position may be expressed, using equationsi
(14) » (17):

v J
“fc = B Mu B
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The expand form equation (19) is simillar to that
. e
given in equation (18) where the inertial coefficient m, 3

e

and the elastic cbefficient Kij

are given in the appendix.
In what follows, the derivation of relationship will be
limited to the inertia broperties. ‘where as the elastic

properties can be deduced similarly.

The (12 x 12) mass and stiffness matrices and Kf

Mf\m un
of the follower set in the uncoupled position can be deduced
by eliminating the first row and column, (corresponding to
q* ). £rom the matrices Meo and Kfc as indicated by dashed

lines in equation (189.

For many reasons it may be required to simulate the
actual system with lower degrees of freedom model such as
the shown 5-DF model of the follower set. In this case the
(5 x 5) mass and stiffness matrices may be obtained by elime

inating,: the rows and columns which correspond to q*.qg,

G 95+ 9%

(13x13) Mg

: q'f ¢ (Iil and qu ., figure (6), from the

and K matrices.

fc

The resulting matrices ares

1 2 2
My + mll » 5 o) o (o]
2 3 3
m33+ m, WM Q O
3 4 & .
. 4 5 5
aymmetrlc m22+m33 m34

N.B. Thé (5x5) stiffnesa matrix K: has a similar form given in

eguation (2G).
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The comparison between the matrices given in equation
{20) and that derived in reference (1) shows that the devel~
oped matrices are more accurate for expressing the inertial
and elastic properties, since the mutual effects of various

types of deformations are still maintained.

A more precise representation of the inertial and elas-
tical properties of the simulated follower set can be obtained
by using the condensation technique (6) for the mass and stiff-
ness matrices, since thq:kinematic compatibility conditions
are still remain. Fof example the elimination of the nodal
generalized forces Q' , Q. Q3 Qg + Qgs Qg0 Q) and ), is
equivalent to the reduction of the (13 x 13) M., and K.

matrices asg

) -l
Mo = Wy, =MW, My My

{5x%5)
and L
Kr " Kll - K12 Kzz ‘KZI. .b.d...‘.(al)
{5%5) ’
where
™1 ’ "2 Kin %52
Meo= |(5%5) | (5%B) |, Kgo = | (55) | (5x8)
| _
|
Bo1 | ™22 K Kz
(8x5)  (8x8) | | (8x5) ) (8x8) |

The expand forms of the reduced matrices may be expressed,

using equations (18) (19) and (21):
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Where Aij and Bij are functions of the mass and elastic

coefficients of the individual elements in global coordinate

system as shown in the

appendix.

In that way, a moré simplified dynamic model can be derived
by further reducing the characteristic matrices. For example
a single degree of freedom simulated follower set may be derived
by recondensation of the'Mr and Kr matrices. For example if qio
is selected to be the géneralized coordinate, we have
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It is seen that the form of equation (23) is more con=-
venient for the dynamic investigation, since the parameters

Rll o8 en ‘22

of the elements comprising the follower set:

appendix).

3«2 Modelling of the Cam Set:

contain the inertial and elastical parameters

(See the.

The rigidly supported cam set represented by that 4~DF
model consists of three structural elements interconnected at
three active nodes as shown in figure . (7).

The camshaft is discretized into two fleuxeral-tersional
elements 1 and 3 interconnected at the rigid joint II. The disk
cam is idealized as nonelastic element lumped at the nodal point
I1 as shown in figure (8).

)

Agsuming uniform cross-section fleuxeral-torsional
structural element. The characteristic matrices can be shown

{(6,7) to be
(13,3, 0 0
13/35 (o]
ﬁe?f IpV3A
S ymmetric

-13/35 o (8]
o ~13/3; o
O o -Ip/3A

13/35 o o
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Assuming the cam element of mass Yand of mass moment of
inertia Q£ the mass matrix may be shown to be
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With )\ = Cos ¢ and M, = Sin ¢ at the end I, the (s x 6)
transformation matrix may be defined as

Ry ;o XI M 0
Rez_._._..g_—-.—-’ RI= —MI 20 --.--.oooo--(zé)
0 i Ry 0 o1

Therefore the (6 x 6) characteristic matrices of the structural

element may be expressed as:

» - -
13,5, 0o o Lip-Ly o 12 0 0 [L2B-l2v 0O
} .
13 o 13  _ 13 12 O j=12v12P O
/35 357 35¢ O ; v
2 2
Ip/34 o o ~Ig/34 2 0 ¢l
{ K =Bl ’
m = -———'“d'—“j"-““—-—-*“313_--‘*_4—“*—‘—“
13,35 0 0 il o o
] z
Symmetric ; l3/35 o Symmetric; 12 o
. 2
| 1/ ! ¥l
» ] N a ! _

-..-.-..-...(27)
] \ . = -p ) =S i & -
Where P = Ay Ay +H{ M = Cos (Gp-d). v =dpH oMy pmsing - %)

With the help of equations (12) to (15), the kinetic and strain
engeries of the cam set are then given by

T = Tl + T2 + T3 ¢ V. = Vl + V3 P

and the mass and stiffness matrices of isolated elements comprising
the cam set are

M, o= l‘[ml] [mz] fin) J . ‘Kus([Kl] [o] [KZ'J J...........(za)

The relaticnships between the generalized coordinates
4} ©8@ o and the nodal displacements Uy «.......U,, figure(s);
may be exprossad with the same forms given in equations (16) and (17).
Therefore the masa and stiffness matrices of the cam set are then
given by
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Where the inertial and elastic coefficients are given in
the appendix. If the inertia couple concerned with qz is neg-
lected, one get a statically and dynamically decoupling model
similar to that derived in reference (1). The (3 x 3) mass and
stiffness matrices are then obtained, as indicated by dashed -
lines in eguation (29).

Refer to (1,2), the coupling between the follower and the
cam sets is modeled kinematically a plane submechanism formed
from a set of massless rigid links. The topology of the coupling
set shown in figure (9) is governed by the transmission ratio(i)
which is continuously variable and depends mainly on the cam curve
slope (2).

The simple model derived in references (1, 2, 3, 4, 5)can
be obtained as special cases of the simulated model developed
here, such as for example the model derived by Bloom (5} can be
deduced by neglecting the mass and flexability of the cam get in
the vertical and tangential directions, whilst the neglection of
the inertia and elastic parameters concerning the tangential and
torsional direction leads to the Eiss's model (4) as shown in
figure (10«a) and (10-b) respectively.
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It may be if interest to note that the inertial and
elastical parameters (ml, my, Ky, K3) are expressed in
terms of the inertial and elestical parameters of the ele-
ments comprising the cam set. Therefore the effect of
local modifications on the dynamic characteristics of the
system can be easly investigated.

3-3 Synthesis of the characteristic matrices of the simulated

Cam-operated transfer Mechanism:

The characteristic matrices Mq and Kq of the entire
mechanism are synthesized by the respective, pre and post
multiplication of the characteristic matrices of the foll-
ower and cam sets in the uncoupled positions by a transfore-
mation matrix A. The latter matrix which apecifies the com-
patibility condition between the two sets, relates the
(16 x 1) Lun uncoupled vector with the (15 x 1) d coupled
vector of the entire mechanism here as

q\m = A qc ....-.-..o.--...(30)~

where from definitions, we have
T

* T T
=[q dg qh.|,

and

T i

. [qw -
c f q.'k‘ L)

The auxiliarly coordinate q*, (which simulates the
motion machined in the cam), and the qg ’ qg and qg .
{concerned with the vertical, tangential and torsional def~-
ormations of the cam set as shown in figure 9), are :elated‘
(1) in the following matrix form '

*

[ = D -00-.-0010000-00(31)
Where D is the meshing vector given by,
D - R § i i b..--...-..,.....(32)

The through inspection of egns (30) ¢ (32) reveals that
the expanded forins of the transformation matrix may be givan
in the following partitioned scheme
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o II....’I'..'..I!.(BE‘L‘)

16 x 15

With the help of equations (18) and {19) the both matrices

may be partitioned in conformance with equation cxg). Thus

Py l _‘ r~ ...‘ , -~
M1 ! M), 0 X1 f“lz L°
M, = 1;-;——6- K, = ;fﬂ:“;_r (34)
e M2« Mrun | ee™ | ®12 | Feun sesuacs
! |
o o i | ol o, Ik |
Where M,; and K,, are the inertial and elastical parameters

corresponding to q ., Hereby the mass and stiffness matrices

of the simulated entire mechanism may be expressed, using equat-
ioan (30) ¢ (34), as
- ; I -
.
Meun | M0
M - ATM A- ————---—J——————.— '..’....(‘35)
q £c p b op
DMlz :DH11D+Mh
| ' .
Similarly " |
| P
Keun ] Ky2P
T
ank‘!{ch- ;"‘"‘ r o ....-...(35)
DKJ.Z ’ DKllD-O-Kh
Where from definitions, we have
1) Mfunmand Kfun are the (12 x 12) characteristic matrices
of the follower set in the uncoupled position,
2) Mh and K, -are the (3x3) characteristic matrices of the
cam set in the uncoupled position.
3) o’ M),D - MllnTD is the diagonal submatrix of ordsr (3x3),

(zince My, is a acaler quantily).
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4) D'M, is the (3 x 12) off diagonal submatrix, nere as

| ! !
T ) ' I
D Mlz = ,- B l o+ 0 ; Q ] esss(37)
where . -

L _ 1 x

m2 M3 W4

.1 .1 ' .1
B = im, 5 ifm, 5 iy 4 seess (38)

.1 .1 ,

) 3 1‘%‘14

The developed partitioned scheme factitates markedly the
formulation effort for synthesizing the characteristic matrix
of the entire cam mechanism. Since the partitioned matrices
given in equations 35 and 36 can be built up successively and
therefore the required size of computer is considerably reduced.

For the sake of comparison between the present method and
Koster's, the foundamental frequancy is computed (See¢ appendix 2)
for the various versions of simulated models of the cam operate
transfer mechanism by using the bound formula (9). From the cale
culation, it is shown that the error, introduced by Koster technique
relative to the present work lie within 5.56 to 6.83 percent.

CONCLUSION

The present approximate method attempts to provide a suffic~
iently simple and powerful tool for generating various versions
in the modelling of the rigidly supported cam mechanism based on
the finite element approach.

The proposed procedure avoids the drawbacks which arise in
the applications of many classical methods such as methods mention-
ed here. The simple methods given in references (1, 2, 3, 4, 3)
can be derived as special cases and as crude approximations of the
developed method.

The formulation of the mass and stiffness matrices are introd-
uced in such a way to render the problem tackable by limited cap-
acity computer, which affect sharply economically in the computat-
ion effort for the machine design. This is because the characteristic
matrices even in the condensed forms include the inertial and
elastic parameters of all elements comprising the original system
in the deterministic forms. However the computed result of the

fundamental frequancy shows that present modelling technique is
gufficieéent.

To integrate this work, further study and investigation con=
cerning the variational € fects of inértial and elastic parameters
of actual constructive values of the system may be carried out in
ehe future.
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IN TWO COORDIEATE SYSTRMS.
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FIGURE (2}s ChAM OPERATED PRANSFER MBCHANISM.
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PIGURE (3): THE POLLOMER, CAM AND COUPLING SBT3 CONPRISING
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FIGURE (¢)3 THE L2-DF PINITE
BLEMENT MOLEL OF THE
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FIGURE (9): THE 3-DF PINITE ELEMENT MODEL OF THE CAM SET

1IN THE COUPLED POSITION.
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APPENDIX (1,

The mass coefficients of the my matrix given in equation (11)
are:

1 o 13, a 2. . o 1.2 2
By <A Teaglt ik a-PaRiegdys) thyy = AGEE®E-a?) - 15is)

Ch o 902k o L 9PAD . 137ab2 2 a_ \\2
t g = 52§ abp’s &‘15 BN g = AR, dy,=faRie RN

2 3
1.2 2 a 9,PAb A2 13%ab”
Py p=Pa g -a?)- 590) P e - AN sty =B 5y o= 23788
3 - 3
N a +b” +b -132 - A37ADT Ab L =IADT |
o hyymPacsly + A5 kg, = SAA s hyp = 2328 “hag." 146~ °

I S __L__ﬁz 1 _.;_.}f_}\_gto‘ é 119 ap? L1 AR Ay l.}‘ _;g_);_'__ 5\2.m5=—34-ﬁ——.ﬁ\

i Mag My = =az0 420

A Pap? .
:and Mg, = G5 5 where & t b=l, , Figure {5)e
The elastic coefficients of the Kl matrix given in equation (11)

are;

1281 21EI. 2 1281 21BE1 9E1 OEL .\, lZEI
klls( a3 )M 0*12‘“(_";"' )M/\ &13'(":2' - —'-i')mv & iy )LVL

121»; 12EI 211:.1 2 651  9EI
% ( W 1%16“("“")!1 kzz"( )5\ 3= (—;2- - 22\
a
1&21 2, o BEI 4hI S5EL 6EL
Rpy= - 25=" (3 I k Ry = (2ER )'11‘34" " tt
2 2EL, 2 2
kg () k(2L k = SR kg = - HEFRA)
. _ _(6EL. . . . 12BEI \2, _ (6EI ) 451
Ryp = Rl Rgs = 03 M Rggm = bzw\ tana Ry, = 4R
The mass coefficients of the LV matrix given in equation (18) are:
2 2 2 , 2 2
=iy - 2m - 2 PAA g, = ¢ My, = 2, = 2 PAl 1)

2 2 2 2 13 2, 13 , 3 - lEAl
)= My = 2, = 2pALN"s i?‘11”' 35 PAlL s i?‘12"" -557) “1*‘)'%13 210
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3 - 13?A12M;3‘22 L 13fal A2, 3 . A1Pal%y iR, = 23281 w382 A 1y ot

23 ¥ T 210 420 66 lOb

-ra1® 4 4 a4 _ fipl £ar’®
by g M1 ™M2™2 Mg =75 0 g33 = 366' 105 °

_ 138a1f By 3a1° At Ry = -pal’/i40 ; A& = L8l y2

3 420 420 44 = 7105
-
13PA1 . 1l Al _“fAlAA_ - XlPal”

The elastic coefficients of Kfc matrix given in equation (19) are;
EA 42 z BAui.
12‘11 = ﬁ33 = -ﬁ13 =1 A% %12 = 'f‘m = 'ﬁza = %34 = "i'ﬂ’\'
: EA 2, 12EI 2 =12ET .
ﬁzzaﬁ“..%uslm,ﬁl-( M)ﬁlz, l3mA.

6EL (A2EL 2, 6EI 4EI 2E1
l’tl:a" il = - "“ﬂ i "'""13 1R, = ﬁ A 33 R g5 ~L.R, 36™ 2

4&1 ; 6EI
1" T 7 i34" i46 1"‘“

ﬂ ﬂx-ﬂ -GJp/l: =2R =E

EI 2ET 2 | 2EI
235 - 2:‘na .- "Tz'-}‘ : 344 - (_1_:5_ KM :i% - "'!"'1"3"' + k) H)

12E1 2
and Rg; = ( 255+ %) A2
The mass coefficients of the M, matrix given in equation (22) are:-

12 2
Ay = [‘.(3‘46"“12) Fi1 hgeFatiyg 31’:"&‘45““‘“14’*[““ PP

2 1
+ iy Pl i“4«3 + [ch, *‘“‘12“"13 + ‘1‘45 23 t “‘14 "33] “‘14] N

~

| ( .
A3 [[( 12)5'11““ 6F21% o 31) fiyy + (RygF 13+ Pygs3) ]"'&

+4 (B P, +0

. 2 2 2 E 2
A3 [‘“‘2351*"‘3331"“23* o (g ghing 33’"‘3 125F44%0y 3

"45)’?‘ 2

i
+ Ry, Fug + By Fyp) By ] N
34 [‘512'3'44"’3‘13”45)326 * (R, Fog v BygFag) By ]' 4
1
hee = [‘a‘za Fao + Bygfes) tyg + (Byq Fyp + Byg Pyg) 2‘36] N
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. 5 . .5 . 1 1
thgy = [(MygFgetingoFey) l§‘35 * "5“35 Fort Bygtyq) r%‘36 A
N 5 .y o8 ] A
ihgg = |(By5Fgg * ‘“36 Fop)iyg *(Myg Fgy + Byghyg) Rye| - ~
and
, . -
Agg = l‘a‘;ste*g 6Fe7! Ryg 345*"67 + Ryg Fr7) PBeg J A
Wheref

=Y 2 3
DN = (g hyy) iy + Bgg By + iy, Fog

g
1 3 .2 11
F)) = Bege By [%22 B3 =3 ] [66 Rgg=(Ryg)® J Flo= s I
66
P ;
2 . , 2 2 2 . _ 2 .2
iF13 = gq 27 Fzz"“'u/é‘ee' 44! [“‘44‘*55*’“22’ (@) ) ]
44

iFyy = 1/‘%‘66 44)('}‘ 6’ o Fag =(F 1/‘%‘66 WY [(‘}‘55*“‘22)‘%«36‘(‘}‘56) ]

1Fae = My [[“}" Fiyp) hghyy=thy ) (hge)-the)” & J[%eo’?‘ss"(‘?‘ssiz]

E“
44 2 Faq
iFu5 = "‘%23 3 Fas Ty ‘b66.'?'66
33 33

feg = (M) "‘44] [’%‘ Ry (“‘33]
m Ry 28 ana F, = A

56
66

2 2 .2
E“‘ss*“‘zz Mgy o= (B y)

L____.tr————1

|

3“‘!0

iFgq

=

The elastic coefficients of the K matrix given in equation (22) are:=

B,, = [ki +ﬁlz)L,l+i46L21+ﬁ1 41.311 (i45+ﬁ12)+x [k45+§12)L12+k46 22'&1 41,32]
1 ; ; 1
+ [(k45 +Rip) Ly + Kyg Ty *+ Ry L33] (kq) | - N
1
1By, [[(x%**% 2)L11+K4o 21*%141'31] 23 * [Raales "‘é44l‘33] ] N

+E abzg) i23+ (i231.12+ﬁ +(§12L44+f"<
2

1
13lss) Ryg | - =

+(§

12bg5 T
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By, = ‘2121'44*2131'45) é26 + (Rl +

5’i

13 5

3

36 iy

N R R

26744 %36 2645 X3655)

+B = (ﬁ

35L66 k365 7)E 354677 F3el

B, = (EM Legt Rygley’ °3 Rys* (Rysley + Ryglo) i4sJ .

1
oy
+ (R, L+ R L7)§36‘.-2¥-§-
.
N

1
Bse = (§451‘66 + 246L67) Ryt (itxs“m 461'77) E46 N

where:;

a

A . (ﬁ55+i€2)x, ok
L

gy = g Rag [ Ry = )] [Rg6 g5 - (ﬁsa’z] Lyp= “Rye 5
a8

11 sef12 * Kaglys

, ‘ 2
Lyy = Ry {‘"‘ P Lppm (Byy/kegeRyy) [ﬁu(ﬁss‘*izz) - () ]
44

3 . 2]
(Ly3/kgeRag) sg)?s Lygm (g /Relyy) [(iss*‘izz’ kog-(ksg) J

Ly, =
2 2 7 2
lgg = 8 [(ﬁ55+ﬁ22) *aeﬁu‘(ﬁzta) (hgg)=Chs) i ] 66 ss"‘iss)]
3
L,..K L, .
44523 44
et e e A %22
33 33

R [(i +£ )i '3 -(ﬁ24)2 iﬁ '(kse) ﬁ ][i33ﬁ22 - (i33)%}

Lee™Res | (F55tka2ReeRay
L L
. 56 ’ _56
ibgy = 2s.e. "3 and L,, = ﬁ55 -5
e6 66

The mass coefficients of the m* given in equation (23) ares

1 1 2 4
R0y =Ayy )= & [‘“‘14“‘11”11“‘13“21] (hyagy 443 [‘Au“'im’clz*“lsczj
where | |

| . . 1
A= By h e vhy ) dhyghgr, v R R A
o

. 1 1 2
1Ay g= (W F) Hmy Foy ) Myy + (hy5Fy 5 + By gFy3) ’“34 .
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7“‘21"[[(‘1"‘45‘“‘%‘12)F 11+ RaFa1 My 4F 31 | hy st [ h gy o ) B ¥y g gty o 32] %‘14 Y
0y = (g gty By ) Rty 1 =B g) (BB -Agg) = (Rt -a33) (i )
= (i g=Ag )% (Ryp+Ryy =Ags)
’%1"‘“‘23"213’ [ (gt ~Agy) (Rt 5 -ags) =i )2]“021"’22(‘%‘44+‘%‘11’A11’
[‘322 + By - A55)(%66+#‘1'1-A44)-($12)2] .
Riz = Ryy = (Bgq - i) [314(.;“14"“11)' 213 Cz4J Al‘z‘
Where:
Cpq = Mg (hy oty o) (RyyoBgy) 1G5, = (hgy+ By - A ) By gmng ) ()
Ryg = By, = Bgg) - K;‘ (Ryq = Asg) I:c44 (Ryq - Asa)]
where:;

. 1 .2 4 1 .2 ' 2
Caq=(ing ¥iny 4 =Ay5) (3‘33‘“‘?‘1_1““33) (g gt 3 =g g )# (Bp, =i g4 4 ) (y gh3q)

Ry yoagy)  (Aggog-iy )1 O = (hy gty ~ay5 )01, +(Ay3-y3) 1,
The elastic coefficienta of the k* given in equation {23) are:=-
11 ® ‘9‘11‘311)'221; [k, g=Byy b0 4B, 50, ] k) 4=Byy )48y, [‘%1‘*14)915313"24
Where:
B11™ &15“1‘15“1‘1**16“12’*hedls"n*’l‘ml‘zz)_l . 71§’
Bis® [filsl‘n* J6ka1) kot d‘isx‘ls*&ie"zs)ﬁsa] N

B,,= [&}‘46"‘%12) L+ i“ Ly, + ft“ 1.31]%15-» l‘(i45+%12)1‘12+i461'22
L TV TP | J o

| 2
Dy, = (RygHhy =By (Reerly (B ) (R +R 3-8+ (Baa‘iaa‘;‘u ) (£ 2)
T2
+ (Rg-Bg)” (B "‘522 ‘ga )
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,

Dyy = (Byz= 13"[ (ise*’ﬂn 44“222*233"355)"&12) J = D,;7 and
2

D= (Rygtky, - By [‘i + Ryy- Bgg) (Rggr B8 0~ (H)5) }

. 1
812 = 521 = (Bg ﬁ34) [ D1gbog-Bry0- 313"24] x;
where;

Dy = ft12“?‘34"?‘16)‘ﬁ:t,:f"a;a:a) and D) = (k, +k - B, ) (Ry =By ) (R} )

and

= (R, - Bgg) + 'E' (Byg = 234) [D ok, - 356)]

where;
-3 ’ 2
(kytk) 1 -By5) &33*’111‘333’ (Rget 117Bag)+(Byp-Ry R ) (R =B )
2 ]
+(ky 3-B,3) ‘5’44"2 ‘ﬁu’ a“"A =(kygtRy =By, D, +(By5R 5) Dy,
The mass coefficients of the M, given in equation (29) are:
mo= m, = (13?‘1) + «{é—f—;‘) o+

1 ?
4= (2_2_)1 & (

m
1- : L
imggm Mgy = (9 1151/?"3

where m is the mass of cam disc.

The elastic coefficients of kh given in egquation (29) are:

12EI_ 1231)" 12EI, 12E1,
Ky = g Y ) ik = Tt (s
1 1 1
GI GI_ o
g =yt (R and kg = g T (GIg/1)3
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Appendix (2)

The Calculation of the Fundamental Frequency

1 - Present Work:-

The kinetic energy of the follower set have 5 DF.

- 1 ‘2 1l s 1 . - A -2 M :
(T)= 5 (1.4 57) qf + 5 & dg + 5 (L.55714) &, + 0.069643 q, G4

+ 1 (0.53214) &5 + 0.25 4y gy + 3 (0.53214) 2+0.06964 dgd

+ % (0.5572) &*
10

The potential energy:-

1. 2
(V) = = {2.2819 . i 2 ;
5 ¢ ) 9 - (2.0944) qq, + 7 (5.64995) g - 2.666 g, ag

+ 5 (3.333) g - 0.666 qgay *+ § (3.333) ¢5-2.666 qga
+ 3 (3.555) afg
Koster Works=-
1 . 2 .1 . . 3
(T)= 5 (1.6499) q§ + 5 quq, + 7 (2. 3535) q “4(0.0589) q4q3+0 +52857 qg
+ 0,25 gydg + 5 (0.5285) ég + (0.05286) 4gd,, + (0.5572) éiu.
(v) = & (2.20154) & -(2.0944) qq, + 7(2.9833) o (. 6888) a,qg
+ 1(1 1852) 2 ~(0.29629) + $(1.1852) %_0.886
it L . Qgdg * zi*- =0+ Y 90

1 . 2
+ 2-(0.888) qlo

dynamlc matrix of the follower set is given by:i-

Eg Q™ [a]
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The largest elgenvalue is 5‘1 (fundamental frequency)

v Skl “ .
T of 6; 1 <: (T 07)

r

b Lo

i T, is trace of matrlx{p]

The dynamic matrix [D] in present work is given by:-

1.90933  1.62213 0.44116 0.325  0.1462 |
f1.37o99 1.528665 .48065 >0.35416 0.15895
[D]= 1.21807 1.3614  0.4206  0.0169 0.1592
0.6683 0.6263 0.0276 0.362 =0.338

Q.4565 0.5178 0.0169 -0.170 1.00246
-

5x5

The dynamic matrix in Koster work is given by:-=

1.43647 1.40517 0.53852 0.52943  0.18606
1.61383  1.3306  0.55713  0.53625  0.19557
| D'L ; 1.378548 1.2621999 0.24897 ~-0.161072 0.13092
2 11.373668 1.17008 ~0.1090875 0.386697 0.26679

1.373918 1.258012 0.673965 1.2010614 £,06269

5x5

The dimension of the mechanism is taken ass-

1, = a + b = 3+4= 7T

L= 3 cm.

lz
13 = 1.5 cm,. A = I.27 = constant
14 = 1.5 cm,
1, = 1.5 cm.

In present Work

T, 0% = 1640228853

T, p*® = 441501314.5
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Hence largest eigenvalue is )\l (foundamental frequency)

) . 1
1620228853 e L
~241501314.35 )\l (441501314.5)15
3.73253 L, K 3.7662
.. Al = 3273253 + 3.7662 = 3.749365 5%
2
"+ I'ne foundamental frequency given by:
w - -1
, = 0.5184414  §
In Koster Work:-
T 0° = 6696135689
TrDls = 1601692192
The largest eigenvalue Al is given by:
1.
6696135689 o ’ e 15
JoEAE KA S (1601692192)
ceaa21823 K\ X 40118077
Lt N m 4.21823 + 4,118077 = 4.l681535 52

1 2

-« I'ne foundamental frequency is:

= 0.4896104 st

The relative deviation is given by:-

X 100 = 5,56 %

27 = 0.5184414 - 0.4896104
0.5184414
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If the system represented as a single deyree of freedow:-

In present works-

Kf = 2.4819
m, = 1.4857
- 2.2819 - ; ,
« . £ = m—g-i L= 1.24173

In koster Works-

K = 2.20154

m = 1.0499

. 2,20154
o e We =v// 16499 =  1,1551

Z 1.24173 = 1.1551 .
= T1.24173 = 6.83%
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