ON THE FORMULATION OF FINITE ELEMENT

MODELS OF CAM MECHANISMS.
Prof.Dr. A.A. Nasser, Dr. A.M. Abdel-Raouf. (2) Dr. S.M. Serag (3) \& Eng. S.M. Ghoneira (4)
SYMORSIS

This paper describes a general procedure of kineto elastodynamic analysis of cam mechanisms based on the finite element approach. The present discrete technique can be utilized to provide various versions of finite element models of planar or spatial more complicated cam mechanisms. The procedure is introduced by utilizing the cam operated transfer mechanism found in Koster's Work ${ }^{(1)}$.
1 - INTRODUCTION
The dynamic analysis of cam mechanisms as prefectly rigid systems has become increasingly inadequate, since the necessary prerequisities for setting up the vibration would not be satisfied. To improve the representation of dynamic behavior of a cara mechanism, various methods have been performed such as for example the methods by Matlhew and Tesax (3). Eiss ${ }^{(4)}$. Bloom and Radcliffe ${ }^{(5)}$ There is however a common criticism to the previously mentioned analysis concerning the indiscrminate modelling technique. In reference (1), Koster gave a Kineto-elasto-dynamic analysis method for which the common drawbacks of the mentioned methods can be avoided, but still Koster's technique is sufficiently applicable for those simple cam mechanisms with low degrees of freedom and still many questions on the modelling of the cam shaft remain.

To permit a closer simulation of the dynamic behaviour of actual complicated cam mechanisms than was possible with simple models, the finite element approach has been utilized in the present analysis. Since this method (7,8) is an efficient tool for

1) Professor of Production Engineering \& Machine Design, Faculty of Eng. \& Tech., Menoufia University.
2) Brig. Military Technical College.
3) Lecturer of Production Eng. \& Machine Design Dept. . Faculty of Eng. \& Tech., Menoufia University.
4) Demonstrator, Faculty of Engineering \& Technology. Menoufia University.
cam operated transfer mechanism of figure (2) represented by 15 DF finite element model consists of a $12-\mathrm{DF}$ aimulated follm ower set and of 3-DF simulated cam set as shown.

The follower set is modelled by connecting a series of links and each link may be simulated by one element perform ing a typical type of motion such as longitudnal, toraional. and or fleuxeral. With regard to the topology of the set, the individual elements are meeting at either pin or rigid jointa. It is of interent to note that a series of dynamic models with lower degrees of freedom may be generated by eliminating the selected number of nodal generalized forces or of nodal genee ralized coordinates concerned the simulated follower set. Equivalently the sizes of mass and stiffnems matrices are reduced either by the condensation of matrices or by the elime ination of the particular number of rows and columne. Theae. concepts will be visualized through the reduction of the siraulated follower set to be as derived by Koster (1,2).

In the modeliling of the flexible cam set, the camahaft is represented by an assenbly of flexural torsional beams inter connected at rigid joint where as the cam element, (inertial element), is assumed to be lumped. Using the conditions of invariance of the kinetic and potential energies under coordinate transformation f, the mass matrix m_{e} and the stiffness matrix K_{e} of the th element ahown in figure 1, can be easly formulated.

The formulation of characteristic M_{q} and K_{q} matrices of the entire mechaniam are then built up by adjoing the characteristic matrices of the cam and of the follower sets. The ajoing process is carried out by pre and post multiplication of the element Characteristic matrices by the coupling matrix which represents the compatibility conditions through the nodal dimplacements. In that view the presence of coupling may be represented schemate atically by a kinematic coupling set. (governed by the cam curve slope) as found in reference (1).

The practical use of the proposed method is visually in need to digital computers, since the higher order of the characteristic matrices, the better will be the accuracy of the analysis.

3 - THE MODELIING OF THE CAM TKANSFER MECHANISM:

The simulated cam mechanism is considered as a combination of the follower set formed from five structural elements and of the cam set formed from three elements. Both sets are coupled by means of the coupler set which is aimulated by a kinematic mechanism $(1,2)$ as shown in figure (3).

In the uncoupled position of the follower set, the independent parameters $q_{j}^{f}(j=1,2, \ldots . .12)$ are selected as the generalized coordinates. In the presence of coupling an auxiliarly dependent coordinate q^{*} may be also utilized fos smulating the cam mction, (the motion machined in the cami.

The generalized coordinates $\quad q_{j}^{h}(j=1, \ldots, 4)$ are utilized for deacribing the configuration of the rigidiy aupported cam set. Hereby the configuration of the simulated mechanism can be completely described by employing $q_{j}(j=1,2, \ldots, 16)$ generalized coordinates.

Figure (3) shows that the model of the entire mechanism consists of three subnodels: follower, cam and coupling sets. In the modelling process the typical element is regarded as an elastic element, lumped masses and or rigid massless elements.

3-1: Modelling of the Follower Set:
Follower set represented by that $12-D F$ model consists of the finite elements (1) up to (5) interconnected at two active pin joints (I. II) and two active rigid joints (III, IV). paking into account the compatibility conditions, the location of the set of generalized coordinates $q_{1}^{f} \ldots \ldots . . q_{12}^{f}$ are selected as shown in figure (4). In the coupled position of the follower set. The auxiliarly generalized coordinate q^{*}, (which is utilized to simulate the cam action) is located at the proper distance (a) from the passive joint 0.

$$
-123-
$$

A typical element (e) of mass ρ is regarded an elastic element of longitudnal rigidity $E A$, torsional rigidity $G J$ and fleuxeral rigidicy EI, having a uniform cross-sectional area A across its length 1. The element mass and stiffness matrices can be shown $(7,8)$ to be

$$
\begin{aligned}
& m_{e}=\frac{p}{G}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right], K_{e}=\frac{K A}{1}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right] \text { for } e=2 \ldots(1) \\
& m_{e}=\frac{I_{p}}{6}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right], \quad K_{e}=G J / 1\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \text { for } \quad e=4 \ldots(2)
\end{aligned}
$$

In the coupled position of the follower set it may be convenient to subdivide the ingut link, (at the location of the auxiary coorainate q^{*}). into two fleuxeral elements as shown in figure (5). The mass and stiffness matrices measured in a local systern $\left(\delta_{2}^{2}, \delta_{2}^{2}, \delta_{3}^{2}, \delta_{4}^{2}\right)$ can be synthesized by adjoing the characteristic matrices of two elements, using the elimination and condensation techniques, here as.

In figure (5) the elements of the follower set are shown seperated. Appropriate displacments are labelled on each, measured in the local and in the gobal coordinate system. With $\lambda=\operatorname{Cos} \phi$ and $M=$ sin ϕ, a transformation matrix R of the typical element (e). figure (1), may be defined (6,7).

$$
R_{e}=\left[\begin{array}{llll}
\lambda & M & 0 & 0 \\
0 & 0 & \lambda & M
\end{array}\right]_{e} \text { for } 2.4
$$

and

$$
R_{e}=\left[\begin{array}{cccccc}
-M & \lambda & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -M & \lambda & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \text { for } e=1,3,5 \ldots(5)
$$

The following holds

Where δ_{e} and U_{e} axe seta of displacements at the two ends of the element in local and global coordinate systems as shown in figures (1) and (5). The invariance of kinetic and strain energies under coordinate transformation, much as:

$$
\begin{equation*}
T_{e}=\frac{1}{2} \quad \dot{\delta}_{e}^{T} m_{e} \dot{\delta}_{e}=\frac{1}{2} \dot{U}_{e}^{T} m_{e} \dot{U}_{e} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{e}=\frac{1}{2} \quad \delta_{e}^{T} K_{e} \quad \delta_{e}=\frac{1}{2} \quad U_{e}^{T} K_{e} U_{e} \tag{8}
\end{equation*}
$$

facilitate the expressing the element mass and stiffness matrices of the eth element:

$$
K_{(S x S)}=R_{e}^{T} K_{e} R_{e}=\left[\begin{array}{llll:}
K_{11}^{e} & k_{12}^{e} & \cdots \cdots \cdot & K_{1 S}^{e} \\
& \cdots & \cdots & \\
\text { aymetric } & \cdots & K_{s s}^{e}
\end{array}\right] \ldots(9)
$$

Where s in the number of nodal displacements of the th element. By the help of the provious equations, the symatric element mass and atiffness matrices measured in a global aystern for the all isolated elements show in figure (5) may be expressed as.

$$
\begin{align*}
& {\left[m_{2}\right]=\frac{\rho}{6}\left[N_{2}\right] \quad, \quad\left[K_{2}\right]=\frac{E_{A}}{1^{2}}\left[s_{2}\right] \text {. }} \\
& {\left[m_{3}\right]=\frac{\rho}{420}\left[w_{3}\right] \quad,\left[K_{3}\right]=E I / L_{3}^{3}\left[s_{3}\right] \text {. }} \\
& {\left[m_{4}\right]=\frac{I_{P}}{6}\left[N_{4}\right] \quad,\left[{x_{4}}_{4}\right]=\frac{G}{1}\left[s_{4}\right] \text {. }} \\
& {\left[m_{5}\right]=\rho / 420\left[N_{5}\right] \quad \cdot\left[K_{5}\right]=E I / I_{5}^{3}\left[S_{5}\right] \text {. }} \tag{10}\\
& \text { Where the symmetric matrices }[N] \text { and }[S] \text { are defined: }
\end{align*}
$$

where the inertial coefficients $\frac{1}{m}_{i j}$ and the elastic coefficients $k_{i j}$ are given in the app endix.

Superimposing the kinetic and strain energies of the five elements shown in figure (5), the total energien may be expressed, using equations (7) and (8), as

$$
\begin{equation*}
T=\sum_{e=1}^{5} T_{e}=\frac{1}{2} \quad \dot{U}^{T} M_{u} \dot{U} \tag{12}
\end{equation*}
$$

and
$v=\sum_{0=1}^{5} V_{e}=\frac{1}{2} U^{T} K_{u} U$

Hexe the mass M_{u} and stiffness K_{u} matrices of all elements comprising the follower aet axe derived by locating the element matrices of the five elements along the diagonal in the rempective order (6). here has

$$
\begin{equation*}
u_{u}=\left[\left[m_{1}\right] \cdot\left[m_{5}\right]\right]_{24 \times 24} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{u}=\left[\left[K_{1}\right] \cdot \cdot\left[K_{5}\right]\right]_{24 \times 24} \tag{15}
\end{equation*}
$$

The relationships between the generalized coordinates
$q^{*}, q_{1}^{f} \ldots \ldots \ldots . q_{12}^{f}$ and the nodal displacements
$U_{1}, U_{2}, \ldots \ldots U_{24}$ of all elements of the follower set
may be expressed as

$$
\begin{equation*}
U=B q \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{U}=B \dot{q} \tag{17}
\end{equation*}
$$

where B is the connecting matrix of order (24×13), which can be easly deduced according to the compatibility conditiona through out the follower set.

Therefore the mass and stiffness matrices of the follower set in the coupled position may be expreseed, uning equations: (14) $+(17):$

$$
M_{f C}=B^{T} M_{L} B
$$

The expand form equation (19) is simillar to that given in equation (18) where the inertial coefficient $\stackrel{e}{m}_{i j}$ and the elastic coefficient $\mathbb{K}_{i, j}$ are given in the appendix.

In what follows, the derivation of relationship will be limited to the inertia properties, where as the elastic properties can be deduced similarly.

The (12 x 22) mass and stiffness matrices $M_{\text {fun }}$ and $K_{\text {fun }}$ of the follower set in the uncoupled position can be deduced by eliminating the first row and coluran, (corresponding to q^{*}). from the matrices $\mathrm{Mfc}_{\mathrm{f}}$ and K_{fc} as indicated by dashed lines in equation (18).

For many reasons it may be required to simulate the actual system with lower degrees of freedom model such as the shown 5-DF model of the follower set. In thie case the (5×5) mass and stiffness matrices may be obtained by elirninating, the rows and columns which correspond to $q * q_{2}^{f}$, $q_{3}^{f}, q_{5}^{f}, q_{6}^{f}, q_{7}^{f}, q_{11}^{f}$ and q_{12}^{f}. figure (6), from the (13×13) $M_{f c}$ and $K_{f c}$ matrices.

The resulting matrices are:

N.B. The (5×5) stiffnesa matrix K_{f} has a aimilax form given in acuation (20).

The comparison between the matrices given in equation (20) and that derived in reference (1) shows that the devela oped matrices are more accurate for expressing the inertial and elastic properties, since the mutual effects of various types of deformations are still maintained.

A more precise representation of the inertial and elastical properties of the simulated follower aet can be obtained by using the condensation technique (6) for the mass and stiffness matrices, since the kinematic corapatibility conditions are still remain. For example the elimination of the nodal generalized forces $Q^{*}, Q_{2}, Q_{3}, Q_{5}, Q_{6}, Q_{7}, Q_{11}$ and Q_{12} is equivalent to the reduction of the (13 $\times 13$) $M_{f c}$ and $K_{f c}$ matrices as:

$$
\underset{(5 \times 5)}{M_{L}}=m_{11}-m_{12} \quad m_{22}^{-1} \quad m_{21}
$$

and

$$
\begin{equation*}
\underset{(5 \times 5)}{K_{r}}=K_{11}-K_{12} K_{22}^{-1} K_{21} \tag{21}
\end{equation*}
$$

where
$M_{f c}=\left[\begin{array}{l:c}m_{11} & \mathfrak{m}_{12} \\ (5 \times 5) & (5 \times 8) \\ \hdashline m_{21} & m_{22} \\ (8 \times 5) & (8 \times 8)\end{array}\right], k_{f c}=\left[\begin{array}{c:c}k_{11} & k_{12} \\ (5 \times 5) & (5 \times 8) \\ \hdashline k_{21} & k_{22} \\ (8 \times 5) & (8 \times 8)\end{array}\right]$

The expand forms of the reduced matrices may be expressed, using equations (18) (19) and (21):

Where $A_{i j}$ and $B_{i j}$ are functions of the mass and elastic coefficients of the individual elements in global coordinate system as shown in the appendix.

In that way, a more simplified dynamic model can be derived by further reducing the characteristic matrices. For example a single degree of freedom simulated follower set may be derived by recondensation of the M_{r} and K_{r} matrices. For example if q_{10} is selected to be the generalized coordinate, we have

$$
\begin{aligned}
& m^{*}-R_{22}-\frac{R_{21^{R}}^{R_{12}}}{R_{11}} \\
& K^{*}-S_{22}-\frac{S_{21} S_{12}}{S_{11}}
\end{aligned}
$$

It is seen that the form of equation (23) is more convenient for the dynamic investigation, since the parameters $\mathrm{R}_{11} \ldots \mathrm{~S}_{22}$ contain the inertial and elastical parameters of the elements comprising the follower set: (See the appendix).
3-2. Modelling of the Cam Set:

The rigidly supported cam set represented by that 4-DF model consists of three structural elements interconnected at three active nodes as shown in figure. (7).

Whe camshaft is discretized into two fleuxeral-tersional elements 1 and 3 interconnected at the rigid joint $I I$. The disk cam is idealized as nonelastic element lumped at the nodal point II as shown in figure (8).

Assuming uniform cross-section fleuxeral-torsional structural element. The characteristic matrices can be shown (6.7) to be

\qquad
Where ψ is a ratio $G J / E I$.
Assuming the cam element of mass γ and of mass moment of inertia of the mass matixix may be shown to be

$$
\begin{equation*}
2=[\gamma \gamma \gamma 00] \tag{25}
\end{equation*}
$$

With $\lambda_{I}=\cos \phi_{I}$ and $M_{I}=\sin \phi_{I}$ at the end $I_{\text {, the }}(0 \times 6)$ transformation matrix may be defined as

$$
R_{e}=\left[\begin{array}{l:c}
K_{I} & 0 \tag{26}\\
-\cdots & K_{I}
\end{array}\right], \quad R_{I}=\left[\begin{array}{ccc}
\lambda_{I} & M_{I} & 0 \\
-M_{I} & 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Therefore the (6×6) characteristic matrices of the structural element may be expressed as:

Where $P=\lambda_{I} \lambda_{I I}+\mu_{I} H_{I I}=\operatorname{Cos}\left(\phi_{I I}-\phi_{I}\right), v=\lambda_{I} M_{I I}-M_{I} \lambda_{I I}=\sin \left(\phi_{I I}-\phi_{I}\right)$

With the help of equations (12) to (15), the kinetic and strain engeries of the cam set are then given by

$$
T=T_{1}+T_{2}+T_{3}, V=V_{1}+V_{3}
$$

and the mass and stiffness matrices of isolated elements comprising the cam set are

$$
\begin{equation*}
M_{u}=\left\lceil\left[m_{1}\right]\left[m_{2}\right]\left[m_{3}\right]\right] \cdot K_{u}=\left[\left[k_{1}\right][0]\left[K_{2}\right]\right] \tag{28}
\end{equation*}
$$

The relationships between the generalized coordinates q_{1}^{h} of q_{4}^{h} and the nodal displacernents $U_{1} \ldots \ldots . U_{18}$ figure (8);
 Therefore the mass and stiffness matricen of the cam set are then given by

$$
\begin{aligned}
& -134
\end{aligned}
$$

Where the inertial and elastic coefficients are given in the appendix. If the inertia couple concerned with q_{4}^{h} is neglected, one get a statically and dynamically decoupling model similar to that derived in reference (1). The (3×3) mass and stiffness matiobes are then obtained, as indicated by dashed lines in equation (29).

Refer to (1,2), the coupling between the follower and the cam sets is modeled kinematically a plane submechanism formed from a set of massless rigid links. The topology of the coupling set showm in figure (9) is governed by the transmission ratio(i) which is continuously variable and depends mainly on the cam curve slope (2).

The simple model derived in references (1, 2, 3, 4, 5) can be obtained as special cases of the simulated model developed here, such as for example the model derived by Bloom (5) can be deduced by neglecting the mass and flexability of the cara set in the vertical and tangential directions, whilst the neglection of the inertia and elastic parameters concerning the tangential and torsional direction leads to the Eiss's model (4) as shown in figure (10-a) and (10-b) respectively.

It may be if interest to note that the inertial and elastical parameters $\left(m_{1}, m_{3}, K_{1}, K_{3}\right)$ are expressed in terms of the inertial and elestical parameters of the elements comprising the cam set. Therefore the effect of local modifications on the dynamic characteristics of the system can be easly investigated.

3-3 Synthesis of the characteristic matrices of the simulated
Cam-operated transfer Mechanism:

The characteristic matrices M_{q} and K_{q} of the entire mechanism are synthesized by the respective, pre and post multiplication of the characteristic matrices of the follower and cam sets in the uncoupled positions by a transformation matrix A. The latter matrix which specifies the compatibility condition between the two sets, relates the (16 $\times 1$) $q_{u n}$ uncoupled vector with the (15 $\times 1$) q_{c} coupled vector of the entire mechanism here as

$$
\begin{equation*}
q_{u n}=A \quad q_{c} \tag{30}
\end{equation*}
$$

where from definitions, we have

and
$q_{c}^{T}=\left\lceil\left. q_{f}^{T} \quad q_{h}^{T}\right|^{T}\right.$

The auxiliarly coordinate q^{*}. (which simulates the motion machined in the cam), and the q_{1}^{h}, q_{2}^{h} and q_{3}^{h}, (concerned with the vertical, tangential and tormional deformations of the cam set as shown in figure 9), are related (1) in the following matrix form

The through inspection of eqns (30) $+(32)$ reveals that the expanded forms of the transfoxmation matrix may be given in the following partitioned scheme

$$
A=\left[\begin{array}{c:c}
0 & D \tag{32}\\
\hdashline I & 0 \\
\hdashline 0 & \bar{I}
\end{array}\right]_{16 \times 15}
$$

With the help of equations (18) and (19) the both matrices may be partitioned in conformance with equation (33). Thus

$$
M_{f c}=\left[\begin{array}{c:c:c}
M_{11} & M_{12} & 0 \tag{34}\\
\hdashline M_{12}^{T} & M_{f u n} & 0 \\
\hdashline- & - & - \\
0 & 0 & M_{h}
\end{array}\right] ; K_{f c}=\left[\begin{array}{c:c:c}
K_{11} & K_{12} & 0 \\
\hdashline K_{12}^{+} & K_{f u n} & 0 \\
\hdashline-1 & --1 & - \\
0 & 0 & K_{h}
\end{array}\right]
$$

Where M_{11} and K_{11} are the inertial and elastical parameters correagonding to q. Hereby the mass and atiffness matrices of the simulated entire mechaniam may be expressed, using equatioan (30) - (34), ac

$$
\left.\begin{array}{l:l}
\text { Similarly } \\
K_{q}=A^{T} K_{f c} A & \tag{36}\\
K_{f u n} & K_{l 2}^{T} D \\
-D^{T} K_{l 2} & D^{T_{K}}{ }_{11} D+K_{h}
\end{array}\right]
$$

Where from definitions, we have

1) $M_{\text {fun }}$ and $K_{f u n}$ are the (12×12) characteristic matrices of the follower set in the uncoupled position,
2) M_{h} and K_{h} are the (3×3) characteristic matrices of the cam set in the uncoupled position.
3) $D^{T} M_{11} D=M_{11} D^{T} D$ is the diagonal subaatrix of order (3×3) a
(since M_{11} is acaler quantily).
4) $D \mathrm{D}^{\mathrm{T}} \mathrm{M}_{12}$ is the (3×12) off diagonal submatrix, nere as

$$
D^{T} M_{12}=\left[\begin{array}{l:l:l:l}
B & 0 & 0 & 0
\end{array}\right] \ldots(37)
$$

where

$$
B=\left[\begin{array}{ccc}
-\frac{1}{m_{12}} & -\frac{1}{m_{13}} & -\frac{1}{m_{14}} \tag{38}\\
i \frac{1}{m}_{12} & i \frac{1}{m_{13}} & i i_{14}^{1} \\
i m_{12} & i \frac{1}{m}_{13} & i i_{14}
\end{array}\right]
$$

The developed partitioned scheme factitates markedly the formulation effort for synthesizing the characteristic matrix of the entire cam mechanism. Since the partitioned matrices given in equations 35 and 36 can be built up successively and therefore the required size of computer is considerably reduced.

For the sake of comparison between the present method and Koster's, the foundamental frequancy is computed (See appendix 2) for the various versions of simulated models of the cam operate transfer mechanism by using the bound formula (9). From the calm culation, it is shown that the error, introduced by Koster technique relative to the present work lie within 5.56 to 6.83 percent.

CONCLUSION

The present approximate method attempts to provide a sufficiently simple and powerful tool for generating various versions in the modeliling of the rigidily supported cam mechanism based on the finite element approach.

The proposed procedure avoids the drawbacks which arise in the applications of many classical methods such as methods mentioned here. The simple methods given in references ($1,2,3,4,5$) can be derived as special cases and as crude approximations of the developed method.

The formulation of the mass and stiffness matrices are introduced in such a way to render the problem tackable by limited capacity computer, which affect sharply economically in the computation effort for the machine design. This is because the characteristic matrices even in the condensed forms include the inertial and elastic parameters of all elements comprising the original system in the deterministic forms. However the computed result of the fundamental frequancy shows that present modeling technique is sufficient.

To integrate this work, further study and investigation concerning the variational effects of inertial and elastic parameters of actual constructive values of the system may be carried out in the futung

REFERENCES

1. M.P. Koster, Vibrations of Carn Mechanism" Macmillan press Lted, 1974.
2. M.P. Koster, "Effect of Flexability of Driving Shaft on the dynamic behaviour of a cam mechanism" Journal of Eng. for induatry. Page 595-602, May 2575.
3. G.K. Mattew and D. Tesax " The design of the modelled Cam system, Part I, Dynamic synthesis and chart design for the two degrees of freedom model, "ASME, J. Engng for industry, Nev. 1975 page. 1175.
4. N.S.Eiss "Vibration of cans having two degrees of Ereedom ${ }^{n}$ ASME, J. Engng for industry, Nov. 1964, Page 343.
5. D. Bloom and C.W Radcliffe" The effect of cam shaft elasticity on the response of cam driven systems" ASME paper 64- Mech. 1964.
6. Przemieniecki "Theory of matrix atructural analysis," Mc Graw Hill, Ine 1968.
7. K.C. Rockey, H.R. Evans, D.W Griffiths and D.A. Nethercot, "The finite element method", 1975.
8. R.C. Winfrey, Anderson and Gnilka, "Analysis of elastic Machinery with clearance" Journal of Engneering for industry, August-1973, PP 695-701.
9. A. Maher "Bound formula for determining the fundamental Erequency" Journal of Sound and vibration (1979) Page 459-462.

The mass coefficients of the m_{1} matrix given in equation (11) are:
$\frac{1}{m}_{11}=\rho A\left(\frac{13}{35} 1+\frac{a}{1680}\right) M^{2} ; \dot{m}_{12}=-\rho A\left(\frac{13}{35} 1+\frac{a}{1680}\right) \quad ; 1_{13}=A\left(\frac{11}{210}\left(b^{2}-a^{2}\right)-\frac{a}{1680}\right)$
$: \frac{1}{m}_{14}=\frac{9}{70} \rho A b M^{2}: \frac{1}{15}_{15}=-\frac{9 \rho A b}{70} M \lambda ; \frac{1}{m}_{16}=\frac{13 \mathcal{F A B}^{2}}{420} H^{2} \cdot \frac{1}{m_{22}}=\rho A\left(\frac{13}{35} 1+\frac{a}{1680}\right) \lambda^{2}$
$: m_{23}=\rho A\left(\frac{11}{210}\left(b^{2}-a^{2}\right)-\frac{a^{2}}{560}\right)^{2} ; \frac{1}{24}=-\frac{9 \rho A b}{70} M \lambda ; \frac{1}{25}=\frac{9 \rho A b A^{2}}{70}: \frac{1}{m_{26}}=\frac{139 A b^{3}}{420} \lambda$

: and $\frac{l_{66}}{} \frac{\rho_{A b^{2}}}{105}$ where $+p=1_{1} \cdot$ Figure (5).
The elastic coefficients of the K_{1} matrix given in equation (11)
are:
$k_{11}=\left(\frac{12 E I}{b^{3}}+\frac{21 E I}{a^{3}}\right) M^{2} \cdot k_{12}=-\left(\frac{12 E I}{b^{3}}+\frac{21 E I}{a^{3}}\right) M \lambda_{i} k_{13}=\left(\frac{9 E I}{a^{2}}-\frac{6 E I}{b^{2}}\right) M ; k_{14}=-\left(\frac{12 E I}{b^{3}}\right) M^{2}$
$: \frac{1}{k}_{15}=\left(\frac{12 \mathrm{EI}}{\mathrm{b}^{3}}\right) M \lambda: \frac{1}{k_{16}}=\left(\frac{6 E I}{6^{2}}\right) M^{2}: \frac{1}{k_{22}}=\left(\frac{12 E I}{b^{3}}+\frac{21 E I}{a^{3}}\right) \lambda^{2}: \frac{1}{k_{23}}=\left(\frac{6 \mathrm{EI}}{b^{2}}-\frac{9 E I}{a^{2}}\right) \lambda$
$k_{24}=-\left(\frac{12 E I}{b^{3}}\right) \mathscr{L}: k_{25}=-\left(\frac{12 E I}{b^{3}}\right) \lambda^{2} ; \frac{1}{k}_{26}=\frac{6 E I}{b^{2}} \lambda: k_{33}=\left(\frac{4 E I}{b}+\frac{5 E I}{a}\right), k_{34}=\frac{6 E I}{b^{2}} M$
$; \mathrm{k}_{35}=-\left(\frac{6 \mathrm{EI}}{b^{2}}\right) \lambda ; \mathrm{k}_{36}=\left(\frac{2 \mathrm{EI}}{\mathrm{b}}\right): \mathrm{k}_{44}=\left(\frac{12 \mathrm{EI}}{\mathrm{b}^{3}}\right) M^{2}: \frac{1}{k_{45}}=-\left(\frac{12 \mathrm{EI}}{b^{3}}\right) M \lambda$
$: \mathrm{k}_{46}=-\left(\frac{6 \mathrm{EI}}{b^{2}}\right) M: \frac{1}{2}_{55}=\frac{12 \mathrm{EI}}{b^{3}} \lambda^{2}: \frac{1}{k_{56}}=-\left(\frac{6 \mathrm{EI}}{b^{2}}\right) \lambda \quad:$ and $\frac{1}{k_{66}}=\frac{4 E I}{b}$.
The mass coefficients of the M_{f} matrix given in equation (18) are:

The elastic coefficients of $\mathrm{K}_{\text {fe }}$ matrix given in equation (19) are:

$$
\begin{aligned}
& k_{22}=k_{44}=-k_{24}=\frac{E A}{1} M^{2}: k_{11}=\left(\frac{12 E I}{1^{3}} M^{2}\right): k_{12}=\left(\frac{-12 E I}{1^{3}}\right) H \lambda ;
\end{aligned}
$$

$$
\begin{aligned}
& K_{35}=5_{56}=-\frac{6 E I}{1^{2}} \lambda ; 5_{44}=\left(\frac{12 E I}{1^{3}}+K_{r}\right) M^{2} ; E_{45}=-\left(\frac{12 E I}{1^{3}}+K_{r}\right) M \lambda \\
& \text { and } \mathrm{K}_{55}=\left(\frac{12 E I}{\lambda^{3}}+k_{r}\right) \lambda^{2} \text {. }
\end{aligned}
$$

The mass coefficients of the M_{r} matrix given in equation (22) axe:-

$$
\begin{aligned}
& : A_{33}=\left[\left(m_{23} F_{11}+m_{34}^{2} F_{31}\right)^{2} m_{23}+\quad\left(m_{23}^{2} F_{13}+m_{34}^{2} F_{33}\right)^{2} m_{34}+\left(3_{12}^{3} F_{44}+\frac{3}{m}{ }_{13} F_{45}\right)^{3}{ }_{12}\right.
\end{aligned}
$$

and

$$
\left.A_{66}=\left[5_{45} F_{66}+5_{46} F_{67}\right) \stackrel{5}{n}_{46}+\left(\stackrel{5}{4}_{45} F_{67}+\stackrel{5}{n}_{46} F_{77}\right) \stackrel{5}{n}_{46}\right] \cdot \frac{1}{\Delta}
$$

Where:

$$
\begin{aligned}
& \left.\left.\frac{1}{m}_{66}-\left(m_{56}\right)^{2}{\frac{2}{m_{44}}}^{2}\right]\left[\begin{array}{lll}
3_{33} & 3_{22}^{3} & -\left(m_{33}\right)^{2}
\end{array}\right]\right]
\end{aligned}
$$

The elastic coefficients of the K_{r} matrix given in equation (22) are:-

$$
\begin{aligned}
& B_{22}=\left[\left(k_{46}+K_{12}\right) L_{11}+k_{46} L_{21}+k_{14} L_{31}\right] \quad\left(k_{45}+k_{12}\right)+\frac{1}{46}\left[\left(k_{45}+K_{12}\right) L_{12}+\frac{1}{K_{46}} L_{22}+k_{14} L_{32}\right] \\
& \left.+\left[\left(\frac{1}{k_{45}}+\hat{k}_{12}\right) L_{13}+K_{46} L_{23}+\hat{k}_{14} L_{33}\right]\left(k_{14}\right)\right] \cdot \frac{1}{\triangle} \\
& ; B_{23}=\left[\left[\left(\frac{1}{K_{45}}+\frac{R_{12}}{}\right) L_{11}+K_{46} L_{21}+K_{14} L_{31}\right] R_{23}+\left[K_{23} L_{13}+K_{34} L_{33}\right]\right] \cdot \frac{1}{\triangle} \\
& ; B_{33}=\left[\left(\dot{k}_{23} L_{11}+k_{34} L_{31}\right) k_{23}+\left(k_{23} L_{12}+k_{34} L_{33}\right) \mathcal{K}_{34}+\left(k_{12} L_{44}+k_{13} L_{45}\right) \mathcal{K}_{12}\right. \\
& \left.+\left(k_{12} L_{45}+\vec{k}_{13} L_{55}\right) \vec{k}_{13}\right] \cdot \frac{1}{\triangle}
\end{aligned}
$$

-147-

$$
\begin{aligned}
& ; B_{34}=\left[\left(\underline{K}_{12} L_{44}+k_{13} L_{45}\right) \vec{K}_{26}+\left(k_{12} L_{45}+F_{13} L_{55}\right) \vec{k}_{36}\right] \cdot \frac{1}{\Delta} \\
& i_{44}=\left[\left(K_{26} L_{44}+K_{36} L_{45}\right) \mathcal{K}_{26}+\left(\mathcal{K}_{26} L_{45}+K_{36} L_{55}\right){ }^{3} K_{36}\right] \cdot \frac{1}{\Delta} \\
& ; B_{55}=\left[\left(\mathcal{K}_{35} L_{66}+\mathcal{K}_{36} L_{67}\right) \mathcal{K}_{35}+\left(\mathcal{K}_{35} L_{67}+\mathcal{K}_{36} L_{77}\right) \mathcal{K}_{36}\right] \cdot \frac{1}{\triangle}
\end{aligned}
$$

and

$$
B_{66}=\left[\left(\sum_{45} L_{66}+\tilde{k}_{46} L_{67}\right) \vec{k}_{46}+\left({ }_{k}{ }_{45} L_{67}+\vec{k}_{46} L_{77}\right) \vec{k}_{46}\right] \cdot \frac{1}{\triangle}
$$

where:

$$
\begin{aligned}
& \triangle=\left(\dot{k}_{55}+\hat{k}_{22}\right) L_{11}+\dot{k}_{56} L_{12}+K_{24} L_{13}
\end{aligned}
$$

$$
\begin{aligned}
& ; L_{13}=-k_{24}^{2} \cdot \frac{L_{11}}{k_{44}} ; L_{22}=\left(L_{11} / k_{66} \cdot \mathcal{K}_{44}\right)\left[\mathcal{k}_{44}\left(\mathcal{k}_{55}+\hat{k}_{22}\right)-\left(\mathcal{K}_{24}\right)^{2}\right] \\
& : L_{23}=\left(L_{11} / k_{66}{ }^{k}{ }_{44}\right)\left(k_{56}\right)^{2} ; L_{33}=\left(L_{11} / k_{66} k_{44}\right)\left[\left(k_{55}+k_{22}\right) k_{66}-\left(k_{56}\right)^{2}\right] \\
& :^{L_{44}}=k_{33} \quad\left[\left(k_{55}+k_{22}\right) k_{66}{ }^{2}{ }_{44}-\left(k_{24}\right)^{2}\left(k_{66}\right)-\left(k_{56}\right)^{2} k_{44}\right]\left[k_{66} \xi_{55}-\left(k_{56}\right)^{2}\right] \\
& ; L_{45}=-\frac{L_{44} \cdot K_{23}^{3}}{\mathcal{K}_{33}} \cdot L_{55}=\frac{L_{44}}{K_{33}}{ }^{3}{ }_{22}
\end{aligned}
$$

The mass coefficients of the \mathfrak{m}^{*} given in equation (23) are:

$$
R_{11}=\left(\frac{1}{m_{11}}-A_{11}\right)-\frac{1}{\Delta_{2}}\left[\left(\frac{1}{m_{14}}-A_{11}\right) c_{11}-A_{13} c_{21}\right]\left(\frac{1}{m_{14}-A_{21}}\right)+A_{31}\left[\left(A_{11}-k_{14}\right) c_{12}+A_{13} c_{22}\right]
$$

where

$$
\begin{aligned}
& A_{12}=\frac{1_{15}}{m_{15}}\left(m_{15} F_{12}+\frac{m_{16}}{F_{21}}\right)+\frac{1}{m_{26}}\left(m_{15} F_{12}+\frac{1}{m_{16}} F_{22}\right) \quad \frac{1}{\Delta} \\
& ; A_{13}=\left(m_{15} F_{11}+m_{16} F_{21}\right) \frac{2}{m_{23}}+\left(\frac{1}{1}_{15} F_{13}+\frac{1}{m_{16} F_{23}}\right) \frac{2}{m_{34}} \cdot \frac{1}{\Delta}
\end{aligned}
$$

$$
\begin{aligned}
& -\left(\stackrel{3}{n}_{16}-A_{34}\right)^{2}\left(\stackrel{5}{n}_{22}+\frac{5}{m_{33}}-A_{55}\right)
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\left(\stackrel{5}{m}_{22}+\stackrel{5}{n}_{33}-A_{55}\right)\left(\stackrel{3}{m}_{66}+\frac{4}{m_{11}}-A_{44}\right)-\left(\stackrel{4}{m}_{12}\right)^{2}\right] \text {. }}
\end{aligned}
$$

Where:

$$
\begin{aligned}
& R_{22}=\left(\stackrel{5}{m}_{44}-A_{66}\right)-\frac{1}{\Delta_{2}}\left(\mathrm{~m}_{34}-A_{56}\right)\left[c_{44}\left(\boldsymbol{m}_{34}-A_{56}\right)\right]
\end{aligned}
$$

where:

The elastic coefficients of the k^{*} given in equation (23) are:-

$$
s_{11}=\left(k_{11}-B_{11}\right)-\frac{1}{\Lambda_{3}}\left[\left(\frac{\left.\left.k_{14}-B_{11}\right) D_{11}-B_{13} D_{21}\right]\left(k_{14}-B_{21}\right)+B_{31}\left[\left(B_{11}-\frac{1}{k_{14}}\right) D_{12} B_{13} D_{24}\right]}{D_{2}}\right.\right.
$$

Where:

$$
\begin{aligned}
& B_{11}=\left[\frac{1}{k_{15}}\left(\frac{1}{15}_{15}^{L_{11}}+{ }^{\frac{1}{k_{16}}}{ }_{L_{12}}\right)+\frac{1}{k_{16}}\left(k_{15} L_{12}+{ }^{\frac{1}{K_{16}}} L_{22}\right)\right] \cdot \frac{1}{\Delta^{\prime}} \\
& B_{13}=\left[\left(k_{15} L_{11}+\frac{1}{K_{16}} L_{21}\right) \frac{k}{k}_{23}+\left(\frac{k_{15}}{L_{13}}+\underline{k}_{16} L_{23}\right) k_{34}\right] \cdot \frac{1}{\Delta}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.* k_{14} H_{32}\right] k_{16}\right] \cdot \frac{2}{\Delta}
\end{aligned}
$$

$$
\begin{aligned}
& +\left(3_{16}-\mathrm{E}_{34}\right)^{2}\left(\mathrm{R}_{5}-\mathrm{K}_{22}-\mathrm{F}_{32}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text {-149- }
\end{aligned}
$$

$$
\begin{aligned}
& i S_{12}=S_{21}=\left(B_{56}-K_{34}\right)\left[D_{14}\left(X_{14}-B_{11}\right)-B_{13} D_{24}\right] \frac{1}{\Delta_{3}}
\end{aligned}
$$

where;
 and
$S_{22}=\left(\mathcal{K}_{44}-B_{66}\right)+\frac{1}{X_{3}}\left(B_{56}-\mathcal{K}_{34}\right)\left[D_{44}\left(\mathcal{K}_{34}-B_{56}\right)\right]$
where:

The mass coefficients of the M_{h} given in equation (29) are:
$m_{1}=m_{2}=\left(\frac{13 \rho A 1}{35}\right)+\left(\frac{13 \rho A 1}{35}\right)_{3}+m$
$i m_{3}=\left(\frac{\rho I_{p}^{1}}{3}\right)_{1}+\left(\frac{\rho I_{p}^{1}}{3}\right)_{3}+I \quad$ and
$m_{34}=m_{43}-\left(\rho I_{p}{ }^{1 / 3}\right)_{3}$
where m is the mass of cam disc.
The elastic coefficients of k_{h} given in equation (29) are:
$k_{1}=\left(\frac{12 E I x}{1^{3}}\right)_{1}+\left(\frac{12 E I x_{x}}{1^{3}}\right)_{3}: k_{2}=\left(\frac{12 E I}{1^{3}}\right)_{1}+\left(\frac{12 E I}{1^{3}}\right)_{3}$
$. k_{3}=\left(\frac{G I}{1}\right)_{1}+\left(\frac{G I}{1}\right)_{3}$ and $\quad k_{4}=-k_{34}=\left(G I_{p} / 1\right)_{3}$

The Calculation of the Fundamental Frequency

I - Present Work:-

Whe kinetic energy of the follower set have 5 DF.
$(T)=\frac{1}{2}(1.457) \dot{q}_{1}^{2}+\frac{1}{2} \dot{q}_{1} \dot{q}_{4}+\frac{1}{2}(1.55714) \dot{q}_{4}^{2}+0.069643 \dot{q}_{4} \dot{q}_{8}$
$+\frac{1}{2}(0.53214) \dot{q}_{8}^{2}+0.25 \dot{q}_{8} \dot{q}_{9}+\frac{1}{2}(0.53214) \dot{q}_{9}^{2}+0.06964 \dot{q}_{9} \dot{q}_{10}$
$+\frac{1}{2}(0.5572) \dot{q}_{10}^{2}$

The potential energy:-

$$
\begin{aligned}
(v)= & \frac{1}{2}(2.2819) q_{1}^{2}-(2.0944) q_{1} q_{4}+\frac{1}{2}(5.64995) q_{4}^{2}-2.666 q_{4} q_{8} \\
& +\frac{1}{2}(3.333) q_{8}^{2}-0.666 q_{8} q_{9}+\frac{1}{2}(3.333) q_{9}^{2}-2.666 q_{9} q_{10} \\
& +\frac{1}{2}(3.555) q_{10}^{2}
\end{aligned}
$$

Koster Work: -

$$
\begin{aligned}
(M)= & \frac{1}{2}(1.6499) \dot{q}_{1}^{2}+\frac{1}{2} \dot{q}_{1} \dot{q}_{4}+\frac{1}{2}(1.3535) \dot{q}_{4}^{2}+(0.0589) \dot{q}_{4} \dot{q}_{8}+0.52857 \dot{q}_{8}^{2} \\
& +0.25 \dot{q}_{8} \dot{q}_{9}+\frac{1}{2}(0.5285) \dot{q}_{9}^{2}+(0.05286) \dot{q}_{9} \dot{q}_{10}+(0.5572) \dot{q}_{10}^{2} \\
(V) & =\frac{1}{2}(2.20154) q_{1}^{2}-(2.0944) q_{1} q_{4}+\frac{1}{2}(2.9833) q_{4}^{2}-(.8888) q_{4} q_{8} \\
& +\frac{1}{2}(1.1852) q_{6}^{2}-(0.29629) q_{8} q_{9}+\frac{1}{2}(1.1852) q_{9}^{2}-0.886 q_{9} q_{10} \\
& +\frac{1}{2}(0.888) q_{10}^{2}
\end{aligned}
$$

The dynamic matrix of the follower set is given by:-

$$
[\mathrm{D}]_{5 \times 5}=[\mathrm{K}]^{-1}[\mathrm{~m}]
$$

The largest eigenvalue is λ_{1} (fundamental frequency) $\frac{T_{r} D^{k+1}}{T_{r} D^{k}} \leqslant 1 \leqslant\left(P_{r} D^{k}\right)^{\frac{1}{k}} ; \quad T_{r}$ is trace of matrix $[D]$
The dynamic matrix $[0]$ in present work is given by:-
$[D]=\left[\begin{array}{lllll}1.90933 & 1.62213 & 0.44116 & 0.325 & 0.1462 \\ 1.37099 & 1.528665 & 0.48065 & 0.35416 & 0.15895 \\ 1.21807 & 1.3814 & 0.4206 & 0.0169 & 0.1592 \\ 0.6683 & 0.6263 & 0.0276 & 0.362 & -0.338 \\ 0.4565 & 0.5178 & 0.0169 & -0.170 & 1.00246\end{array}\right]$

The dynamic matrix in Koster work is given by:-
$|\mathrm{D}|_{5 \times 5}\left|\begin{array}{lllll}1.43647 & 1.40517 & 0.53852 & 0.52943 & 0.18606 \\ 1.61383 & 1.3306 & 0.55713 & 0.53625 & 0.19557 \\ 1.378548 & 1.2621999 & 0.24897 & -0.161072 & 0.13092 \\ 1.373668 & 1.17008 & -0.1090875 & 0.386697 & 0.28679 \\ 1.373918 & 1.258012 & 0.673965 & 1.2010614 & 2.06269\end{array}\right|$
5×5

The dimension of the mechanism is taken as:-

$$
\begin{aligned}
& 1_{1}=a+b=3+4=7 \\
& 1_{2}=3 \mathrm{~cm} \\
& 1_{3}=1.5 \mathrm{~cm} \\
& 1_{4}=1.5 \mathrm{~cm} \\
& 1_{5}=1.5 \mathrm{~cm}
\end{aligned}
$$

In present Work

$$
\begin{aligned}
& \mathbf{T}_{r} D^{16}=1640228853 \\
& T_{r} D^{15}=441501314.5
\end{aligned}
$$

Hence largest eigenvalue is λ_{1} (foundamental frequency)

$$
\begin{aligned}
& \frac{1640228853}{441501314.5} \lambda_{1} \quad(441501314.5)^{\frac{1}{15}} \\
& 3.73253 \leqslant \lambda_{1} \leqslant 3.7662 \\
& \therefore \lambda_{1}=\frac{3.73253+3.7562}{2}=3.749365 \quad 5^{2}
\end{aligned}
$$

-• The foundamental frequency given by:

$$
w_{1}=0.5184414 \quad s^{-1}
$$

In Roster Work: -
$T_{r} D^{16}=6696135689$
$T_{r} V^{15}=1601692192$
The largest eigenvalue λ_{1} is given by:
$\frac{6696135689}{1601692192} \leqslant \lambda_{1} \leqslant(1601692192)^{\frac{1}{15}}$
$\therefore .4 .21823 \leqslant \lambda_{1} \leqslant 4.118077$
$\therefore \lambda_{1}=\frac{4.21823+4.118077}{2}=4.1681535 \mathrm{~s}^{2}$
.. The foundamental frequency is:
$\omega_{1}=0.4896104 \quad s^{-1}$

The relative deviation is given by:-
$\eta=\frac{0.5184414-0.4896104}{0.5184414} \times 100=5.56 \%$

If the system represented as a single degree of freedom:-

In present work:-

$$
\begin{aligned}
\mathrm{K}_{\mathbf{f}} & =2.2819 \\
\mathrm{~m}_{\mathrm{f}} & =1.4857 \\
\therefore \mathrm{f} & =\sqrt{\frac{2.2819}{1.4857}}=1.24173
\end{aligned}
$$

In Roster Work:-

$$
\begin{aligned}
\mathrm{k}_{\mathbf{f}} & =2.20154 \\
\mathrm{~m}_{\mathbf{f}} & =1.0499 \\
\therefore \quad w_{f} & =\sqrt{1.20154} 1.6499 \\
\eta & =\frac{1.24173-1.1551}{1.24173} \Rightarrow 6.83 \%
\end{aligned}
$$

"

مهــند س/ هبحــى محمــد حسـن غنــــيم

 وهي هجموءة التابع "Follower set " منلة بـ منظومة كديدة لدرجات الحهية ولها

 التكيغ أفضل د

 الوقت رالجهه فى تصمير أجـسزاء الماكينات •

