Attempt All Questions

1-a) True Or False : each statement with T Or F.

- The width of MOS transistor increases, its gate capacitance will decreases.
- MOS transistor with high Vt has less power and switch slower.
- Virtex-5,one slice contains two LUTs.
b) Short Answers.
- Give three reasons,differences between dynamic and static CMOS inverters....
- System-on- Chip (SoC) has
- Give three reasons, benefit of scaling
c) Explain : - FPGA computer aided design (CAD). - Define features of synthesis tools. - Integrated Software Environment(ISE).
d) Discuss,can build a CMOS buffer /inverter, the pull-up network with NMOS and pull-down network with PMOS.

2-a) Implement the following functions using programmable logic array:

$$
\begin{aligned}
& W=A B C+A \bar{B} C+\bar{A} \bar{B} \bar{C}+A \bar{B} \bar{C} \\
& X=\bar{A}+B C
\end{aligned}
$$

Define the types of its outputs.
b) Explain CMOS transistor fabrication steps and define testing, packaging, and its problems.
c) Calculate the noise margins of the DMD, with the parameters:
$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{TD}}=0.6 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{TU}}=-0.8 \mathrm{~V} \quad \mathrm{knu}=\mathrm{knd}=60 \mu \mathrm{~A} / \mathrm{V}^{2}$ $(\mathrm{L} / \mathrm{W}) \mathrm{d}=4 \quad(\mathrm{~L} / \mathrm{W}) \mathrm{u}=24$

3-a) Prove that static CMOS inverter is ratioeless.
Define its properties and noise in digital ICs.
b) Design a CMOS inverter with the following paramters :
$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{TN}}=0.6 \mathrm{~V} \quad \mathrm{kn}=40 \mu \mathrm{~A} / \mathrm{V}^{2}$
$(\mathrm{W} / \mathrm{L}) \mathrm{p}=2.5(\mathrm{~W} / \mathrm{L}) \mathrm{n} \quad \mathrm{V}_{\text {TP }}=-0.8 \mathrm{~V} \mathrm{kp}=16 \mu \mathrm{~A} / \mathrm{V}^{2}$
Calculate the noise margin of the circuit.
4-a) Draw a pull down network shown in Fig. 1. Write the Boolean logic function.
Sketch its stick diagram.
b) Explain why dynamic logic,and why not? . Discuss domino logic gates and its problems.
c) Implement 2 -input NOR gate using BiCMOS technique. Explain such circuit is faster than static one.
5-a) Find the $\mathrm{Wn} / \mathrm{Wp}$ ratio of a Pseudo NMOS inverter with the following parameters:

$$
\begin{array}{ll}
\text { NMOS } \quad \mathrm{V}_{\mathrm{TN}}=0.6 \mathrm{~V} \quad \mathrm{kn}=60 \mu \mathrm{~A} / \mathrm{V}^{2} & \mathrm{Ln}=0.8 \mu \mathrm{~m} \\
\text { PMOS } & \mathrm{V}_{\mathrm{TP}}=-0.7 \mathrm{~V} \quad \mathrm{kp}=45 \mu \mathrm{~A} / \mathrm{V}^{2} \\
\text { Ap }=0.8 \mu \mathrm{~m} \\
\text { Assuming } \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{Vin}=\mathrm{V}_{\mathrm{DD}} \text { and } \mathrm{V}_{\mathrm{OL}}=0.22 \mathrm{~V}
\end{array}
$$

b) What are the factors affected on a pseudo NMOS inverter?
c) Implement $\mathrm{F}=\left(\mathrm{X}_{1} \mathrm{X}_{2}+\mathrm{X}_{3} \mathrm{X}_{4}\right)\left(\mathrm{X}_{5}+\mathrm{X}_{6}\right)$ using NP CMOS ligic. Let $\mathrm{F} 1=\overline{\left(\mathrm{X}_{1} \mathrm{X}_{2}+\mathrm{X}_{3} \mathrm{X}_{4}\right)}, \mathrm{F} 2=\left(\mathrm{X}_{5}+\mathrm{X}_{6}\right)$, and $\mathrm{F}=\overrightarrow{\mathrm{F} 1} \overrightarrow{\mathrm{~F} 2}$

Fig. 1

