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ABSTRACT

An approach for the optimization of turbulent flow in diffusers is presented. A
methodology is developed to integrate a finite volume-based computational fluid
dynamics (CFD) mode! and an optimization tool uses micro-genetic algorithms (-
GA). The CFD model is based on the Reynolds-averaged Navier-Stokes equations,
with the standard k-¢ closure turbulence model.

This methodology is tested on two cases. The first is the estimation of the conical
diffuser length, which gives the maximum pressure recovery coefficient, for a given
diffuser area ratio. Good agreement between the computational and experimental
results is obtained. The second case is the optimization through wall contouring of a
given two-dimensional diffuser area ratio and length ratio. The resuits indicate that the
diffuser performance can be tmproved by this method.

Keywords: Optimization — Genetic Algorithms — Diffuser - Turbulent Flow
1. INTRODUCTION

Well-designed diffusers should cause minimal total pressure losses and deliver
nearly uniform flow at their exits. In some engineering applications, short straight
diffusers are demanded for weight and space considerations, resulting in large changes
in cross-sectional area. This may develop strong secondary flow and boundary layer
separation. Consequently. an increment in the total pressure loss at the diffuser exit is
caused.
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Experimental studies on the design of symmetric diffusers dealt with the best choice
of sizing variables namely: the area ratio AR and the diffuser length to inlet width ratio
L/W,. More sophisticated techniques for reducing or even avoiding flow separation can
be found in engineering practice. These techniques include: (i) boundary layer suction,
(ii) boundary layer blowing, (iii) insertion of guide vanes, and (iv) wall contouring. The
last technique has advantages over the other techniques such as: no auxiliary equipment
is required as in methods (i) and (ii) and that the flow passage is not partially blocked
as in method (iit).

The use of numerical optimization for laminar and turbulent flow applications has
received attention in recent researches. Adventure of high-speed computers and
availability of reliable CFD solvers greatly simplify the numerical optimization
processes to achieve complex shape designs for optimum performance. It should be
mentioned that the accuracy of any optimization process relies on the accuracy of the
CFD code, which implies that inaccuracies in the code shade doubt on the outcome of
the optimization. For the CFD code, inadequate turbulence modeling might cause the
imprecision.

Table 1 shows a summary of previous numerical studies on the optimization of 2-D
and conical diffusers for incompressible flow. Three-dimensional S-shaped diffusers
(e.g. Lefantzi and Knight [1]) and diffusers with compressible flow are not inciuded.

Cabuk and Modi {2] derived a variational formulation of the problem of
determining the profile of a plane diffuser (of given upstream width and length) for a
maximum static pressure rise. They obtained the diffuser shape as well as the diffuser
width at the exit section. Their results showed that the numerically obtained C, values
for the optimum diffuser were always higher than those for straight diffusers of the
same area ratio at several Reynolds numbers in laminar flow regime.

Table 1. Previous numerical studies on diffuser optimizatien for incompressible flow

Authors, (Year) Optimization Typeof | Typeof | Reynolds | Area | Ratio
Method Diffuser Flow Number | Ratip | L/W, |

Cabuk and Modi Adjoint operator 2-D Laminar | 50— 500 - 3

(1992). [2} method

Svenmingsen ctal. | Sequential linear 2-D Laminar 400 1.68 3.78

{1996), [3] programming

Cholaseuk et al. Black-box 2D & Laminar | 50— 400 - 3

(1999), {4] _optimization Conical N

Madsen et al. Sequential linear | 2-D Turbulent [ 2x10° | 1.5-3 3

(1999}, (5] _programming |

Madsen et al. Response surface | 2-D i Turbulent | 2 x 10° 2 1.5
(2000). [6] techniques
Cholaseuk et al. Black-box [ 2D Laminar
(2000). {7] optimization '
Eisinger and Extrem. Simpiex. | Conical | Turbulent
Ruprecht (2001). [8] | and genetic methods
Lund et al. ‘| Sequential linear 2-D T Turbulent
(2001). [9] rogramming
Madsen and Multifidelity 2-D Turbulent
Langthjem response surface

[ (20013, {101 approximations [
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Svenningsen et al. [3] presented an approach to the quasi-analytical sensitivity
analysis for CFD problems. The quasi-analytical sensitivity analysis forms a substantial
part of an optimization ool based on sequential linear programming. They applied their
method on a two-dimensional laminar-flow diffuser to maximize the pressure recovery
by altering the wall shape. Compared to a straight-walled diffuser, the optimized shape
constituted a minor improvement (3% in C,).

Cholaseuk et al. [4] and [7] explored the optimum design of fluid flow devices
using designed numerical experiments, and the stability (robustness) of such designs,
respectively. The search pattern during the optimization process was suggested by the
design of experiment methodology. The proposed framework was tested with one
potential flow problem and two laminar-flow diffuser problems. Significant
improvements in C, for both plane and conical diffusers were achieved for all studied
Reynolds numbers. For example, for a Reynolds number of 100, the initial straight
diffuser produced a C, value of 0.41 while the optimum-profile diffuser produced 0.46.

Madsen et al. [5) presented results from derivative-based design optimization of
turbulent flow subsonic diffusers with straight centerline. They considered the two-well
known techniques for reducing flow separation, namely: contouring of the diffuser wall
and insertion of straight guide vanes. For diffuser designs with small area expansions
and no flow separation, the potential gain from optimization was marginal, whereas the
pressure recovery of wide-angled diffusers improved substantially.

Madsen et al. [6] used the response surface techniques for design optimization of a
two-dimensional diffuser. The wall shape was optimized to achieve maximum pressure
recovery, with two different profile representations for the wall. Their analysis resulted
in a diffuser design, which was mostly bell shaped with the end of the diffuser wall
bent concavely outward. The gain in pressure recovery from optimization was small
(1%), as there was a large family of diffusers with essentially identical performance.

Eisinger and Ruprecht [8], in their study of the shape optimization of a turbine draft
ube, applied different optimization algorithms, among others, on two axially
symmetric diffusers. In the first case, the only optimized parameter was the length of
the diffuser while for the second case, a combination of two diffusers, two parameters
were optimized: the length and the exit diameter of the first diffuser. The genetic
algorithm showed a very robust behavior, but it required a distinctly more optimization
cycles and computational time.

Lund et al. [9] studied the wall contouring of a 2-D symmetrical diffuser for
maximum pressure recovery. They studied one of the diffusers used by Madsen et al.
[5]. The wall contour was described with a B-spline having 5 control points that were
allowed to move vertically. The value of C, was increased from 0.665 to 0.67]. ie..
only a small improvement was obtained by changing the wall contour in this case.

Madsen and Langthjem [10] obtained the optimum area ratios AR for fixed-length
diffusers using the multifidelity response surface and the sensitivity-based search
optimization. In terms of the maximum static pressure recovery, the two optimal
designs were practically indistinguishable (C,-values within 1%).

The objective of the present research is 1o develop a methodology to integrate a
surface representation fechnique, structured grid generator, a Reynolds-averaged
Navier-Stokes solver and a genetic algorithm optimization tool to maximize the static
pressure recovery coefficient of subsonic diffusers.
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2. OPTIMIZATION LOOP

Optimization methods may be divided into two basic categories, namely. gradient-
based, and non-gradient-based. The former category includes the classical steepest
descent method. conjugate gradient method and sequential quadratic programming
method. These techniques rely upon an accurate estimate of the gradient of the
objective function, which may not always be feasible.

Non-gradient-based optimization algerithms require only the evaluation of the
objective function for a given design variable. Recent researches have focused on
evolutionary algorithms that mimic the Darwinian process of natural evolution to
achieve an optimum design. Evolutionary Algorithms have been applied to a broad
scope of engineering design problems, and are adopted in the present study.

The automated optimization process is based on the development of several tools
linked within a loop algorithm presented in Fig. 1. The heart of the optimization loop,
implemented for designing diffusers, is called the optimizer. The automated loop links
together an optimizer (optimization algorithm) with a fluid-flow simulator, Declaring
the optimization geometrical parameters and implementing the geometry constraints to
reduce the computational time, the optimizer generates a candidate diffuser that is
described by the geometrical parameters. These values of the parameters are passed to
the flow field analysis. This analysis consists of a geometrical processor to describe the
studied geometry, a grid generator to create the grid, a flow solver (Reynolds-averaged
Navier-Stokes simulations) and a post processor for the presentation of the calculated
flow variables. Based on the simulation results, the objective function is calculated.
The optimizer generates another candidate diffuser described by new values for the
geometrical paramelers and the loop continues until an optimum objective function is
reached which gives the optimum shape.

The following sections describe the four major points of the automatic optimization
procedure, namely: design parameterization, CFD-simulation, objective function, and
optimization algorithm.

Values of
mm Geometrical Grid
Optimization Processor Generator
Parameters
~—— ™| Optimizer
y

Value of
Objective
Function

Optimum Shape
(Optimum
Parameters)

Figure 1. Structure of the mathematical optimization loop
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3. DESIGN PARAMETERIZATION

Great 1mponance is given to the parameterization criterion of the diffuser geometry
since it affects both the validity and efficiency of the optimization. Describing the
diffuser geometry by a large number of paramelers is recommended in order to explore
a wide range of possibilities in the total search space. However, it is known that the
larger the search space, the higher the computational effor.

The details of the diffuser geometry parameterizalion are given in § 7.2.

4. CFD-SIMULATION

The CAFFA (Computer-Aided Fluid Flow Analysis) (Ferziger and Perié, [11])
Navier-Stokes solver was used in this study to evaluate the performance of the two-
dimensional and axisymmetric diffusers. CAFFA is a general purpose CFD code that
solves 2D Reynolds-averaged Navier-Stokes equations using a body-fitted finite
volume discretization method.

4.1. Governing Equations

The numerical solution of the time-averaged Navier-Stokes equations with the
standard k-g model of turbulence are employed in the present work.

The steady transport equation for a general dependent variable ¢ can be written in
two-dimensional and/or axisymmetric form as follows:

9 L2 o 2 24
- (pUg)+ o (" pvg)= x[ ‘axJ ”ay[r °’ay] S, .(1)

Superscript n of #" is 1 for axisymmetric and 0 for two-dimensional. [ is the
exchange coefficient and S; is an accumulation of source terms not explicitly
represented by the remaining terms of the equation. The dependent variable ¢ can be
unity (mass conservation), &/ or ¥ {momentum conservation}, & (turbulence energy), or
£ {energy dissipation).

The governing equations for the case of zero tangential velocity, and the constants
used in the slandard k- model (Launder and Spalding, [12]} are given in Tables 2 and
3, respectively.

The isotropic effective viscosity is given by:

4

k
nueﬂ' =JU+au|' =IU+C;IP? (2)

The production of turbulent kinetic energy £ is given by:

s A ] e
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Table 2. Transport equations

Equation b r, S,
———————
Continuity 1 0 0
dp 0 ou 1 8 av
x-momentum | U 4, -t — —Z " Rl
d dx ax(ﬂff” ax] r ay[ Her ax]
2u,.V
y‘momenmm V ﬂ‘,ﬂ' —-_a_£+_i. ﬂeﬂ“a—({ +_I.__a_ r"#eﬂ'al -n ﬂ“f‘
dy ©0x ey ) r"oy dy r
Transportof k | & p+£‘— pP-pe
Oy
2
Transport of £| ¢ p+ﬂ- C,, Bf_P—C”ﬁ_
g K k
L c

Table 3. Constants adopted by the standard k-e model,
Launder and Spalding [12]

C,u Csl Cel 2 T,

0.09 | 144 | 1.92 | 1.0 | 1.3

4.2. Boundary Conditions

The boundary conditions required to solve the system of goveming differential
equations are presented in this section. Generally there are four types of boundaries:
inlet, outlet, symmetry axis and solid walls.

Inlet, A uniform velocity profile is prescribed at the inlet. Values of k and gare

estimated according lo the equations: &, =1.5(JU,,)" where U, is the average inlet
velocity and 7 is the turbulence intensity (=3 %)and £=C,(k’"?)/0.05D for the

conical diffuser and &, =C, k’* /(0.3 W,) for the two-dimensional diffuser.

Outles. Downstream the diffuser, the flow extends over a sufficiently long domain
so that it is fully developed at the exit section. Thus for any variable ¢. the axial
gradient is presumed to be zero, 8¢/ Cx=0.

Symmelry axis. On the symmetry axis, the radial derivative for any variable ¢,
vanishes, so that 24/8y=0.

Solid walls. At the wall boundaries, the no-slip conditions are applied.
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4.3. Fluid Flow Solution Procedure

The CAFFA is a body-fited finite-volume code with a collocated variable
arrangement. The pressure and mean veloeity fields are coupled with the iterative
SIMPLE algorithm, Patankar [{3]. to promote the solution of the pressure field. The
treatment of the momentum equations at wall boundaries has been achieved by the wall
function approach of Launder and Spalding [12]. An upwind-differencing scheme is
used for the discretization of the goveming equations. The linear equation systems
arising from discretization are solved with the strongly implicit procedure of Sione
[14]). Converged solutions are accepted when the abselute residual sums, normalized by
the inlet fluxes, are below 10 for all variables.

5. OBJECTIVE FUNCTION

The working principle of diffusers is to obtain a static pressure rise through
deceleration of the fluid by area enlarging. Depending on the particular diffuser
installation, the primary objeclive can be either a velocity-decrease (the diffuser is
placed after the test-section discharge of a closed-circuit wind tunnel to decrease power
requirements), a pressure-increase (the use of a diffuser downstream of a turbine), or to
supply a downstream process with a steady, uniform flow (the diffuser is placed
immediately before a turbomachine). In the present work, the design objective is
maximizing the static pressure rise.

The diffuser performance is characterized by the static pressure recovery. The static
pressure recovery coefficient €, can be defined as the ratio of the static pressure rise

through the diffuser to the dynamic pressure at the diffuser inlet:

pEx ~ P
==& Lh e (B
* 05pUL ¢

where p, and p. are the average static pressures at the inlet and outlet of the
diffuser, respectively. p is the fluid density and U, is the average inlet velocity.

It is well known that for diffusers with tailpipe discharge, the static pressure
continues to rise slightly beyond the diffuser exit as the velocity distribution changes.
Experimental investigations have shown that the position of maximum pressure varies
with divergence angle and other factors, and that it occurs between two and six outlet
diameters downstream the exit in conical diffusers (Cockrell and Markland [15)). It is
chosen to determine the inlet and outlet pressures at the entry plane of the diffuser and
the plane of the maximum pressure in the tailpipe, respectively.

6. OPTIMIZATION ALGORITHM

The technique used in this study for the optimization of two-dimensional diffusers
is based on Genetic Algorithms (GA) {Goldberg, [16]). GAs are search procedures
based on the mechanics of natural genetics in that a population of artificial individuals
exchanges information to eventually adapt itself to set conditions according to the
"survival of the fittest” principle.
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6.1. Overview of Genetic Algorithms

Genetic algorithms are stochastic numerical search procedures inspired by
biological evolution, cross-breeding trial solutions and allowing only the fittest
solutions to survive and propagate to successive generations. They deal with a
population of individual (candidate) solutions, which undergo constant changes by
means of genetic operations of reproduction, crossover, and mutation. These solutions
are ranked according to their fitness with respect to the objective function where the fit
individuals are more likely to reproduce and propagate to the next generation. Based on
their fitness values, individuals (parents) are selected for reproduction of the next
generation by exchanging genetic information to form children (crossover). The
parénts are then removed and replaced in the population by the children to keep a
stable population size. The result is a new generation with (normally) better fitness.
Occasionally, mutation is introduced into the population to prevent the convergence to
a local optimum and help generate unexpected directions in the solution space.

6.2. Components of Genetic Algorithms

Standard genetic algorithms involve three basic functions: selection, crossover, and
mutation. Each function is briefly described below.

Selection — Individuals in a population are selected for reproduction according to
their fitness values. In biology, fitness is the number of offspring that survive to
reproduce. Given a population consisting of individuals identified by their
chromosomes, selecting two chromosomes as parents to reproduce offspring is guided
by a probability rule that the higher the fitness an individual has, the more likely the
individual is selected. There are many selection methods available including weighted
roulette wheel, sorting schemes, proportionate reproduction, and tournament selection.

Crossover — Selected parents reproduce the offspring by performing a crossover
operation on the chromosomes {cut and splice pieces of one parent to those of the
other). In nature, crossover implies two parents exchange parts of their corresponding
chromosomes. In genetic algorithms, crossover operation makes two strings swap their
partial strings. Since more fit individuals have a higher probability of producing
offspring than less fit ones, the new population will possess on average an improved
fitness. The basic crossover is a one-point crossover. Two selected strings create two
offspring strings by swapping the partial strings, which are cut by one randomly
sampled breakpoint along the chromosome. The one-point crossover can be easily
extended to k-point crossover. It randomly samples 4 breakpoints on chromosomes and
then exchanges every second corresponding segments of two parent strings.

Mutation — Mutation is an insurance policy against lost bits. [t works on the level
of string bits by randomly altering a bit value. With small probability, it randomly
selects one bit on a chromosome then inverts the bit from 0 to I or vice versa. The
operation is designed to prevent GA from premature termination, namely converging to
a solution too early. :
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6.3. Micro-Genetic Algorithm

In the present study. the optimization algorithm is based upon a Genetic Algorithm.
The program was developed by David Carroli [17]. [18]. Reproduction and mutation
take place using the micro-genetic algorithm (4-GA) technique with elitist strategy
(Krishnakumar, [19]). The poputation size is fixed at only 5 individuals: since a strong
crossover enriches diversily in the new population of strings, crossover is used with a
probability of one and the mutation rate is kept at zero. This means that all the new five
individuals are obtained through uniform crossover and none of them comes from the
mutaticn of an individual of the old population. However, mutation stilf acts on the bits
of the offspring with a low probability (0.005). The GA configuration used is
tttustrated in Table 4.

Table 4. The GA configuration used

| GA Technique |_4-GA with elitism |
| Population size | 5 individuals |
| Offspring by crossover | 100%5 .
Offspring by mutation | 0% |
Mutation probability | 0005
| Bits per parameter |- 10

7. APPLICATIONS

In the design of diffusers, different optimization problems could be identified,
Kline et al. [20]. Among these, the following two cases are investigated:

1. Maximum pressure recovery for a given area ratio (AR) regardless of tength in
the flow direction. A conical diffuser is designed in this study according to the
data given by Eisinger and Ruprecht [§].

2. Maximum pressure recovery through diffuser wall contouring with given AR and
L/W,. This casc study is for a two-dimensional diffuser and it was adopted from
Madsen et al. [6].

In the two cases, the flow is assumed to be steady turbulent incompressible flow.
Due to symmetry. only the symmetric half of the diffuser is considered in the
numerical analysis. The diffuser centerline has symmetry boundary conditions and the
upper wall is a no-slip wall.

The formulation of the optimization problem ts as follows. The objective of the
design optimization s to find the values of the design variables with the consideration
of various constraints in such a way that an objective function attains a maximum
vatue. The design constraints are determined by feasibility considerations for each
paraineter. The constraints are driven by functional restrictions and the Reynolds
number is kept constant.
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7.1. Length of Axially Symmetric Diffuser

The first problem examined is that of determining the length of an axisymmeltric
diffuser that leads to the maximum pressure rise under certain flow, boundary and
geometry constraints. The geometry constraints, Fig. 2, are: prescribed inlet diameter D
(=0.15m), constant length of inlet and outlet sections of values L, =D and L, =D,
respectively. The diffuser area ratio is 4. A uniform velocity profile is specified at the
inlet, U, =10 m/s, and the inlet Reynolds number based on the inlet diameter is
Re = 10°. The aim is to estimate the conical diffuser length, L, that gives the maximum
pressure recovery coefficient. The maximum length of the diffuser is limited to 12 D,
which corresponds to a total divergence angle, 2 @, of 4.8 deg. The behavior of the
genetic algorithms is tested and the only parameter (degree of freedom), which will be
optimized, is the length of the diffuser.

Therefore, the considered problem has:

Objective function F=C,
Parameters (design variables) L
Design constraints O<L<i2D

Grid Independence Tests

A grid refinement study is performed to ascertain the grid resolution required for
the optimization. For a selected diffuser with L/D = 8, three sets of grids are used: a
coarse grid of 70 x 15 (1,224 grid points), a medium grid of 100 x 30 (3,264 grid
points}) and a fine grid of 140 x 40 (5,964 grid points). Each grid set is in the
longitudinal and radial directions, respectively, and the grids are refined near the walls
and at the regions with high gradients. Figure 3 illustrates the variation of the pressure
recovery coefficient along the diffuser and the tailpipe, and the gain in the C, through
the tailpipe. The difference in C, values between the medium and fine grids is small.
Based on this grid selection study, an effectively grid independent solution is achieved
by the fine grid. All results presented here are for the fine grid.

It is worthy to mention that as the optimization tool chooses the length of diffuser,
the number of grids in the longitudinal direction of the diffuser is tuned to be sure that
the resulted grid is properly achieved to obtain grid independent solution.

— L 12D L —nt

ax

o @ e |

— L —_ — e e |

Figure 2. Axisyrnmetric diffuser with one degree of freedom (shown arrows at Fx)
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Figure 3. Effect of grid density on Figure 4. Pressure recovery coefficient
pressure recovery coefficient rise in the tailpipe
Effect of the Tailpipe

Experimental results of the effect of the length of the tailpipe on C, have been
reported by Miller [21]. It is observed that the presence of a tailpipe is most beneficial
in diffusers of larger area ratios and wider divergence angles. Conversely, for small
divergence angles and small area ratios the presence or absence of a tailpipe has only a
small effect on C,. The outlet pipe or passage length to obtain maximum static pressure
recovery is typically of the order of four diameters. For diffusers with tailpipe, it has
been found that C, is relatively insensitive to the entry velocity profile.

For the studied case, Figure 4 illustrates the variation with the diffuser half
divergence angle of the pressure recovery coefficients at the diffuser exit and at the
section of the maximum mean static pressure in the tailpipe. As observed earlier from
Fig. 3, the static pressure continues increasing in the tailpipe. The increment in G, in
the tailpipe is noticeable and great with large diffuser angles. The values of C,
coefficients at the tailpipe are used in the optimization.

Optimization Results

For diffusers of a given area ratio, there is a value of the length parameter L/D for
which C, is a maximum. This maximum is denoted by C,” and its loci has been drawn
on diffuser performance charts, Ward-Smith [22]. [n Figure 3. the calculated pressure
recovery coefficients for arbitrarily selecied diffuser lengths by the optimization runs
are plotted. After 35 calculations of different diffuser lengths the micro-genetic
algorithm obtained the optimum length.

From Figure 5, it can be noticed that at a [ength of about 6.5 times the inlet
diameter, the change in G, is very small. The maximum pressure recovery coefficient
obtained by optimization is 0.8223 at L/ =6.433. This value corresponds to a total
divergence angle, 2 «, of 888deg. To make a comparison with the available
experimental resulis for conical diffusers with 1ailpipe discharge. the diffuser
performance charts given by Ward-Smith [22] and Ishikawa and Nakamura [23] are
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used. According to the performance chanl of Ward-Smith and for an area ratio of 4. the
C,," line gives L/D=78 and 2 a of 7.34 deg, while Ishikawa and Nakamura
performance chart gives L/D=14.32 and the angle 2 @ is4 deg. Both experimental
data give G, of 0.85. The big difference in the results of the previous experimental
works is atiributed to the blockage of the inlet velocity profile, the Reynolds number,
and the tailpipe length.

Figure 6 illustrates the variation of the pressure recovery coefficient C, obtained by
the optimization runs with half the divergence angle of the diffuser. Also, the pressure
recovery coefficients obtained from the equations proposed by Ishikawa and Nakamura
[23] are shown. They give the C, coefficients at the section of the maximum pressure
in the tailpipe for conical diffusers with 2° < ¢ < 15° and having a fixed stall and no
appreciable stall, respectively, as:

C, =0.891-0.00097 « - 0.00073a* . (5)
C, =(0.912-0.0008¢ - 0.00047 & *)(1 - AR™?) )

The region between these two equations is for diffusers with transitory stall, Fig. 6.

The numerical simulations of the flow field show that for small half divergence
angles (@& < 6.5°) there is no appreciable stall, while with values greater than that value
there is transitory stall. C, values obtained by Egq. (6) for the no appreciable stall is
higher than the numerical value of this study, Fig. 6. This can be attributed to the long
tailpipe (> 20 D) used in Ishikawa and Nakamura experiments compared to the tailpipe
length used in this study (L, +12 D~ L) which depends on the selected diffuser length
during the optimization. In the transitory stall region, it is believed that there is an
overestimation of the numerical values of C,. This is on account of the previous
observations, {24]-[27], that the k-g¢ turbulence model, among other models,
overestimates C, due to the underestimation of the reattachment length of the
separation region.

o8y
082 -
a
o Q
L&)
0.81 - |
| |
. 0.4~ i
080! | — Numerical (Presenl Study)
0.2/ - Ishikawa & Nakamura (Fixec Stall)
—-—- Ishikawa & Nakamura (No Stall)
1
OTE e = o ] L oo! e e e T e e
4 5] a 10 12 & 5 10 15 20 25

Figure 5. Pressure recovery coefficient
variation with the length ratio

o, (degrees)

Figure 6. Pressure recovery coefficient
variation with half the divergence angle
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7.2. Two-Dimensional Diffuser Wall Contouring

The second case is the achievement of maximum pressure recovery through wall
contouring of a two-dimensional diffuser with given area ratio and length to height
ratio. The baseline diffuser corresponds to the proposed configuration of Madsen et al.
[6]. The geometry of the two-dimensional diffuser and its details are shown in Fig. 7.
The geometry consists of an inlet section, a diffuser and an outlet section. The inlet
width W, is taken as 0.15 m and the exit width ¥, as 0.3 m. Therefore, the diffuser has
an area ratio AR =2.0. The diffuser length L=1.5#, and the total divergence angle,
2 @, is 36.9 deg. Inlet and outlet sections of lengths L =05I¥, and L, =3.5W,,

respectively, are attached to the diffuser to get uni-directional flow at the inlet and the
exit.
The inlet flow conditions to the diffuser are prescribed in the straight duct at L

upstream of the diffuser inlet. The uniform inlet velocity U/, is 10 m/s. The Reynolds

number based on the inlet width of the diffuser is 10°.

Diffuser wall parameterizations can be achi¢ved by using polynomial functions or
parametric curves such as B-splines and Bezier curves. Polynomial functions are
chosen to represent the two-dimensional diffuser contour because they are simple curve
representation. Polynomials are often considered impractical for design optimization
because of a tendency to produce undesirable wiggles. For diffusers, this problem is
eliminated by enforcing analytically derived conditions of curve monotonicity,
{Madsen et al. [6]).

The diffuser wall contour is defined by a fourth-order polynomial:

y()=a,x* +ax* +a,x? vax+a, e (D)

The polynomial curve must pass through four points: the inlet point (In), the two
control points (1) and (2) and the exit point (Ex), Fig. 7. The two control points define
the shape as well as the curvature of the inlet and outlet edges of the diffuser. Each
coordinate for the control point could take a value inside a predetermined range
defining a family of "realistic” shapes. In the present study, the abscissas of the control
points are uniformly spaced along the diffuser length, ie, x, =0.5W, and x, =W,

The ordinates of the two control points y, and y, are the design variables and they are

chosen inside a fixed range of acceptable values. At the diffuser inlet, the wall contour
is C'-continuous to avoid a sharp edge entrance, whieh may lead to undesirable onset
of separation. This tangent continuity gives the condition of zeroslope dy/dx=0 at

— L L L
Ex

LT LLL P AL LA ES AL LI EL S LSO L

UL LU w,i2

W,/2 l

Figure 7. Baseline 2-D diffuser
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the diffuser inlet (x=0). Applying this condition, the polynomial function is reduced
to:

wx)=a,x’ +a,x* +a,x’ o (8)

The coordinates of the two control points and the exit point are used to solve Eq. (8)
and obtain the polynomial coefficients in terms of control point positions )| and ¥,:

a, = (12p, =35, )W +2/(OW,)
a, =(" 20}’( + Byz)/le _2/(3 le)
a, =(8y, —4y,)YW +4/low?) e (9)

Monotonicity Constraints

Experimental and numerical evidence indicates that maximum pressure recovery in
diffusers occurs at the border of appreciable flow separation. For this reason, strongly
separated diffuser flows should be avoided, making it reasonable to restrict the design
space to monotonic wall shapes.

Based on experiments, Carlson et al. [28] established the highest pressure recovery
coefticients from bell-shaped diffuser designs. This has been established by numerical
optimization of diffusers with laminar flow, Cabuk and Modi [2] and Svenningsen et
al. [3}, and with turbulent flow, Madsen [29].

e The monotonicity in the position of control points yields:

0<y, <y, <W, /2 e (10)

e For a wall shape y(x) to be monotonic, it is required that the first-order
derivative does not change its sign:

dy

= =x(4a4x2+3a3x+2a2)=x2(x)>0 for 0<x<L5W,
X

Since x is positive in the considered interval, it is sufficient for monotonicity that
Z(x) is posilive in the same interval. The two conditions Z{(x=0)>0 and

Z(x=15W,)>0 yield:

2
y2<4}’1+2_7W1 (1D
13
, <y, +— W e (12
}"_ I 54! (12)

Figure 8 shows the ordinates of the two control points y, and y, non-dimensionalized

by half the inlet height #,/2. Both initial and reduced design spaces are depicted in Fig.
8. Equations (10)-(12) are represented by lines a. b and c, respectively. The initial
design space is the upper triangle, while the reduced design is that given by the dotted
surface.

Similar to the previous case, the considered problem has:
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Objective function F=C,
Parameters (design variables) A
Design constraints Egs. (10). (11yand (12)

Grid Independence Tests

Before starting the optimization, a grid refinement study was performed also on this
case. For a 2-D diffuser with straight walls, the grids used were: 100 x 30 (3,264 grid
points), 120 x40 (5,124 grid points) and 130 x 50 (6,864 grid points). The fine grid
achieves a grid independent solution; consequently it is used for the optimization runs.

Optimization Results
Figure 9 shows the hill chart of the pressure recovery coefficient for the non-
dimensional parameters 2y, /W, and 2y,/W,. It can be noticed that different diffuser

shapes are found to yield essentially the same performance. The central region
indicates the optimal region. The space with C,=0.69 comprises designs with
performance within 0.08% of the optimal. For the maximum pressure recovery
coefficient, there are multiple design points that meet this objective. Table 5 gives the
non-dimensional parameters 2 y, /W, and 2y, /W, the corresponding diffuser shapes

without the inlet and outlet sections, and the streamlines.

The improvement in C, over that for a straight walled diffuser represents the gain in
pressure rise due to shaping of the diffuser with a polynomial curve. The straight wall
diffuser with the same area ratio AR and Reynolds number is tested numerically and the
obtained C, is 0.6887. Comparing to the optimum profile diffuser's pressure recovery
coefficient C, = 0.6908, resuits in an improvement in C, less than 1% which can be
considered as very small gain. This is in consistent with the remarks of Madsen et al.
[5] that the pressure recovery improves marginally for small area ratios and
substantially for great values. :

1.0

2 yszl

2y, /W

Figure 8. Initial and reduced design Figure 9. Hill chant of the pressure
spaces for Case 2 recovery coefficient for Case 2
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Table 5. Optimum profile diffusers C,, parameters, shape and streamlincs

G /W, 2yiW, Diffuser Shape
" 0.6908 025013 |  0.51453 l

e —
- i — N

The obtained numerical results are compared with those of Madsen et al. [5]; for the
same area ratio but with a different Reynolds number. The study of Madsen et al. [6]
gives the predicted optimum value of C, equals to 0.7185 for 2y, /W, =0.3767 and

2y, /W, =0.5333. Applying these values of parameters for the code used in this study,

the predicted C, is 0.6788. The comparison of the values of C,, indicates that the code
used by Madsen et al. [6] has a weaker tendency for flow separation. The difference
between the two codes applying the same standard k-& model could be explained by
factors such as numerical diffusion and discretization schemes used in the two codes.

8. CONCLUSIONS

An automated design of two-dimensional and axisymmetric subsonic diffusers has
been achieved. Three codes of fluid flow simulation (Grid, CAFFA and Plot) and an
optimization tool using the micro-genetic algorithms have been coupled. The CFD
model is based on the Reynolds-averaged Navier-Stokes equations, with the standard
k-¢ closure turbulence model. The objective of the optimization was to maximize the
static pressure recovery coefficient. The optimization tool and the flow field simulation
are evaluated through two test cases. The flow is incompressible and fully turbulent
with a Reynolds number of 107, based on the inlet width. The obtained computational
resuils are compared with existing experimental and computational data. The first case
dealt with one degree of freedom: the length of a conical diffuser, and the second case
is a two-dimensional contoured diffuser that was designed with two degress of
freedom: the vertical positions of the two control points of the wall surface.

The following conclusions may be drawn from the present study:

- The design optimization tool is fully automated and it works smoothly providing
improved subsonic diffuser geometries.

2- For the turbulent flow computation of the conical diffuser (case 1), the numerically
predicted optimum diffuser pressure recovery coefficient is compared with
experimenial results. Good agreement is obtained in the region of no-appreciable
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stall. The optimum conical diffuser divergence angle is 8.81 deg for an area ratio of

4

3- Comparison of the straight-walled diffuser with the optimum profile diffuser (case
2), for an area ratio of 2, indicates that a minor improvement is achieved by wall
contouring.
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area ratio, Wo/W, for 2-D diffuser; D»*/D,? for conical diffuser
constants in the k- model

eddy viscosity cocfficient

static pressure recovery coefficient

diameter of diffuser at inlet, (m)

diameter of diffuser at exit, (m)

objective function

turbulence intensity, (%)

turbulent kinetic energy, (m*/s%)

length of diffuser, (m)

superscript in Eq. (1): for axisymmetric: n=1; for 2-D: n=0
turbulence energy generation rate, (m*/s’)

average static pressure at the diffuser exit, (Pa)

average stalic pressure at the diffuser inlet, (Pa)

Reynolds number, pU, W, /u

mean streamwise velocity component, (nm/s)

average inlet velocity, (m/s)

mean transverse velocity component, (im/s)

width of diffuser at inlet, (m)

width of diffuser al exit, (m)

abscissa of the firsi control point, {m)

abscissa of the second control point, (m)

ordinate of the first control point, (m)

ordinate of the second control point, (m)

divergence angle. [AR =1+ 2(L/W )tang for 2-D diffuser:

VAR =1+2(L/D)tanea for conical diffuser], (deg)

dissipation rate, (m’/s®)
taminar viscosity of fluid, (Pa.s)
effective viscosity, (Pa.s)
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M,
p

o

turbulent viscosity, (Pa.s)
density of fluid, (kg/m’)
o turbulent Prandti numbers in k and € transport equations

3
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