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This paper presents a discrete proportional plus 

integral control algorithm and procedures for design- 

ing such controllers. The procedures have been applied 

and a controller is designed for a synchronous genera- 

ting unit, connected to a large power system. Simula- 

tion results are presented which illustrate that the 

controller improves considerably system performance 

and is very effective in damping power system 

oscillations. 

1.  I N T R O D U C T I O N  

Traditionally, power system controllers are 

designed using the well-established single-input/ 

single-output techniques. This, however, does not take 

account of interaction between various control loops 

in the system which are now becoming very pronounced 

because of the increasing size of interconnections.The 

increasing complexity of power systems have also 

renders power system engineers to search for new 

methods of operation and control.Modern control theory 

offers a good alternative as it takes account of .. 
interaction between various control loops and also the 

resulting controllers could be implemented by using 

on-line computers (1 -7)  
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To design a discrete optimal controller, a linear 

model of the system should be obtained in state-space 

form ( 3 )  . A cost function is then defined which when 

minimized as a multi-stage decision process and sub- 

ject to the system model, leads to a constant feedback 

matrix. One basic problem may be faced when implemen- 

ting such controllers is to be minimizing the offset 

in some state-variables when the system is subjected 

to unknown type of disturbance. To overcome this prob- 

lem, a proportional plus integral control algorithm is 

introduced in this paper. The integral action is 

employed on some state-variables only which need to be 

controlled predisely in steady-state. A discrete- 

proportional plus integral control algorithm for a 

turbogenerator system is designed. Simulation results 

are presented to show the effectiveness of the 

proposed control algorithm and design technique. 

2 .  CONTROL ALGORITHM 

In a standard form, a linear time-invariant state- 

space model can be written as follows : 

where X is nxl state-vector, U is rnxl input vector, A 

is nxn system matrix, B is nxm input matrix, n and m 

are the system order and the number of inputs 

respectively. 

The solution of Eqn. (1 ) , yields - 
A (+to) t 

X(t) = e . X(to) + 1 e A(t--r) . B.U(T) . d ~  (2) 
t 
L 
0 

In computer control systems, which employ digital 

techniques, the input is constant over intervals of T 
S 

seconds. Therefore, 



Forto = K T  and t = (k+l)TsI Eqn. ( 2 )  gives the 
S 

following standard discrete-time model. 

% + I  = @ x, + A "k ( 4  

where 4 is the state-transition matrix and A is the 

deriving input matrix. 

Let Zk be a vector contains the showen variables 

for integral control, where Zk is related to Xk as 

follows : 

zk+ 1  = C Xk ( 5 )  

where C is mxn matrix contains the necessary elements 

from a unit matrix. Eqn.(4) can then be augmented by 

Eqn.(5) to give the following augmented model 

in a compact form : 

( 7 )  

using Eqn.(7), a digital controller can be developed 

by minimizing the quadratic performance index J : 

where Q and R are nxn and mxm weighting matrices. The 

minimization technique would lead to the following 

control law : 

partitioning the feedback matrix, F , yields 



Eqn. (2) illustrates a proportional plus integral 

control law with integral control on selected variables 

which can be determined by elements in the C matrix. 

3 .  D E S I G N  T E C H N I Q U E  

The design of the control system developed in 

this paper is based on adapting the eigengalues shift 

policy in Reference (7) to become suitable for this 
I case. The eigenvalues shift .is assumed to give -its 

main effects on the movements of the real part of the 

eigenvalues towards the origin of the unit circle in 

the Z-plane. Let : 

Q : is nxn weighting matrix contains the ini.tial 

weighting elements. 

X : is the initial value of the ith eigenvalue. i - 
Ah : is the increment change in the ith eigenvalue. i - 
A : is the change in the diagonal elements of the 
q 

weighting matrix Q between two successive 

iterations. 

The increment change for an eigenvalue which 

results from changes in the diagonal elements of the 
(7) weighting matrix Q is given by . 

t axi 
where A - - -  = Sensitivity coefficients 

if q a q 

Assuming the general case in which Ai is complex 

conjugate. Then, separating Eqn. ( 1  3) into real and 

imaginary parts gives : 

Considering only the movements in the real parts, then : 



where A E = vectdr contains real parts of dominant 

eigenvalues , 
t S = Real ( A  , q 1 .  

Now with the knowledge of Sthow q can be deter- 

mined to achieve specefic shift?.In order to determine 

Aq, let : 

AETw = Sum of weighted real shift for dominant m 

eigenvalues. 
m 

= C Bi AE 
i= 1 i 

Then from Eqn . ( 1 5) , one may have 
t AETw=$ . Aq 

where , 

where, B's are positive weighting elements to distin- 

gush between the relative shifted eigenvalues. Since 

linear relationship is valid between the real shift 

and the increment change in Aq. ( 7 ) ,  then 

The controller may then be designed according to 

the algorithm explained by the flow chart shown in 

Fig. 1 .  

4 .  STATE-SPACE MODELLING 

The system considered in this study is a two-pole 

synchronous generating unit. It consists of a synch- 

ronous generator connected to a large power system via 

transformer and a douple circuit transmission 1ine.The 

generator is deriven by a steam turbine and is excited 
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via a thyristor exciter fast valving and fast acting 

excitation system are assumed. The system is shown in 

Fig.2 and is modelled based on park's non-linear 
(3 )  equations . 

The system non-linear equations are perturbed 

about an operating point and arranged into a set of 

state-variables, where P $d and P $ are neglected and 
9 

the constants appear in the appendix (11) . 

where, 

The constants appear in the appendix (11). 

5 .  SIMULATION RESULTS 

The system shown in Fig.2. is operated at an 

operating point,defined by an active power P = 0.80 P.U 

and reactive power Q = 0.60 P .U and the controller is 

designed using the algorithm described in sections 3 

and 4, as follows : 

Weigh t ing  e l e m e n t s  

*diag = Starting weighting elements 

6 P6 J'fd Gv T~ 
= (1000 , 1000 , 1000 , 1000 , 1000) 





A diag (After one iteration) = 
(2 

Open loop eigenvalues : X 
It2 

= 0.978 + J 0.147 
X3 = 0.988 

4 = 0.818 

= 0.966 

Closed-loop eigenvalues: 
h 
1 t2 

= 0.667 f J 0.225 

3 = 0.17 

4 = 0.935 

Feedback m a t r i x  

Fig.3 shows that the non-linear time response of the 

system with and without controller. The result illus- 

trates that the controller provides substantial imp- 

rovements in performance compared with the open-loop 

result as well as considerable damping of oscillation. - 
The results were obtained by solving the system non- 

linear equations by using the Runge-Kutta numerical 

technique with an integration step of 0.002 second, 

and 1906 ICL computer. 

6. CONCLUSION 

The paper presented a proportional plus integral 

multi-variable control low along with an algorithm for 
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designing such controllers. The application of this 

technique is shown to improve the performance cons- 

iderably.The controller can be implemented in practice 

using a mini-computer or microprocessor where the 

control signals are to be applied at specified 

instants. 

The results illustrate substantial improvements 

in system stability and damping out power system 

oscillations when the controller is introduced. The 

techniques introduced in the paper are quite general 

and could be applied to other systems than that 

studied here. 
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APPENDIX (I) 

An Algorithm to Compute Ai 
19 

The composite matrix G is known to have the 

following properties (7) 

1) The 2n eigenvalues of G are symmetrically located 

with respect to both real and imaginary axes of the 

complex Z-plane (inside the unit circle). Let the 

eigenvalue vector A of G be partitioned as 

where AI has positive real parts (stable eigenvalue) 

and AII has negative real parts (inside the unit 

circle) . Then we have 
AI = - %I 

2) The eigenvalues with the positive real parts of B 

are the same as those of the optimal closed-loop 

system, i.e. 
- A, - [ A ,  , ... Ai An] 

3) The eigenvector matrix of G, can be written as 

and the first column of the eigenvector matrix Z 

corresponding to the stable eigenvalues A I ' 
4 )  The eigenvector of G~ may be written as 

Let an eigenvector of the stable eigenvalue Zi of G 

be 



and that of G~ be 

L - vi - IVi - - [ZIVi , -2  - IIIi 
l t  

z ~ ~ ~ i  

the following is obtained 

where, 
L 

The 

K 1  

K3 

Since in the chosen case 

then we get 

I 

and for the diagonal changes in Q the following 

is obtained 

where 

and 
- 1 - -  

if qJ 'i 'III~ (J) ZIi(j) 
where, 

APPENDIX (II) 

coefficient of rnakrix A,B are 
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NOMENCLATURE 

General 

4 
A 

X 

u 
Q 
R 

q 
F 

X=E+jH 

hi,q 
S 

G 

A,Z,V 

LIST OF 

: Transition matrix. 

: Driving matrix. 

: State vector. 

: Control vector. 

: Positive definite weighting matrix. 

: Positive definite weighting matrix. 

: Vector diagonal elements of Q. 

: Feedback gain matrix. 

: Eigenvalue vector. 

: Sensitivity vector of the eigenvalue-4 w.r.t q. 

: Sensitivily matrix. 

: Composite matrix. 
T : Eigenvalue vector, elgenvector matrices of G,G . 

SYMBOLS 

Rotor angle. 
d Rotor speed deviation, P = - dt 

Field flux linkage. 

Position of inlet valves. 

Generator shaft torque. 

Exciter input. 

Governor input. 

Busbar real power, busbar reactive power. 

Sampling interval is 20 ms. 

Inertia constant. 

Terminal voltage. 

Angular frequency of infinite busbar. 

Field resistance. 

Stator resistance. 

Line resistance. 

Resistance of d-and q-axis damper windings. 

Transformer resistance. 

Infinite-busbar voltage. 
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T ~ ' T h  : Equiva len t  governor and t u r b i n e  t i m e  c o n s t a n t s .  

Xd'xq : Synchronous r eac t ance  i n  d-and q-ax is  damper 

windings.  

'ad "aq : Mutual r e a c t a n c e  between armature  and f i e l d  

winding. 

'KD 'KQ 
: S e l f  r eac t ance  i n  d-and q -ax i s  damper windings.  

' f d : S e l f  r eac t ance  of f i e l d  winding. 

X~ 
: Transformer and l i n e  r e a c t a n c e s  . 

R~ 
: Transformer and l i n e  r e s i s t a n c e s .  


