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ABSTRACT 

- In this paper a multi parametric linear programming problem is consid- 

ered as that of finding the set of all optimal solutions with respect to the given 

domination cone and also the set of all optimal parameters . 
,The primal problem in which the parameters exist in the objective func- 

tions can be solved by algorithm I . The dual problem in which the parameters 

exist in the right hand side of the constraints can be solved by algorithm I1 . 

1. Introduction : 

The simplex-technique is an algebraic method which wiiI solve exactly 

any linear multi parametric programming problem in a finite number of steps. 

This algorithm gives us the set of optimal solutions for any mulli parametric 

linear programming and hence the solvability set (the set of all optimal param- 

eters) . Here, solutions of the problem means that the cone extreme paints of a 

given optimal set with respect to a given convex cone which specifies the domain 

structure of the decision-maker . 
' .  

Examples are given to demonstrate the possible saving in computations 

of the simplex-technique algorithm parametrically . 
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2. Solving a Multi parametric linear programming 
(the parameters in the 0.f.) : 

Consider the following problem : 
n n 

Fl(A) = m a r  C { A J f j ( x ) / ~  E X ,  A, > o ; C/$ = I ) ,  (2.1) 
f=o p o  

Subject t o  : M = (s E X  / A s  _< b ,  s 2 01, where : 

(i) X is a compact set on Rn , (ii) be concave for all j = 0, 1, ..., n 
a To reduce 2 parameters, suppose that C < = n . 

3 =I 

n n 
Ram the assumption we get : C qj-1 = n , and 01 = n - % - I  

1 =2 

Therefore : 

n 

qj -1  > 0 ,  (j = 2 ,  ..., n )  and xv,-l = n) (2.3) 
1=2 

This procedure can be applied to our problem with at most three objec- 

tive functions to get an equivalent parametric problem with only one parameter 

. Hence problem (2.3) takes the f o b  : 

where 

Zj = C, + qt j  ; q E (q.$ be a scalar parameter subjected to -. - 

TO solve this problem, we use the following algorithm 
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Algorithm I : 

Step ( 0 )  : 

Put q = 0 , and solve the linear programming problem with compact 

simplex method to have an optimal basic feasible solution s' = B-'b . 

Step (1) : 

Put q = q&lr-l in (2.4) ,  q E (q.7)  . Then we apply the compact simplex . - 
method to get the end table for 0 = qr-1 

(0 5 j 5 n )  go to step ( 5 ) )  otherwise if zj - cj > 0 , t i y j  - 4 < 0 . Then 

Step (2) : 

~f vk-, = go to step ( 4 ) ,  otherwise substitute by V k - ]  in (2.4) ,  go to 

step ( 1 )  and if gyj  - t j  = 0 , go to step (4) . 

Step (3) : 

Calculate another table (opt imum) which is a similar, where z; - ccJt 2 0 ,  

t iTy j  - t: < 0 . Then 

Step (4) : 

The vector xk is optimum for all q  E (%-, , vk- , )  . Put qk = 01-1 , 
- -+ k = k+1 if t&Tyj - E; = 0 , go to step (6)) Or if xk = y , f j 'k-I  - vr-l  , go to 
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Step ( 5 )  : 

If there is one s'(0 < s* < 0) with k:(qk+) < 0, m d  g ,  *y; - zjS* 5 0 

, go to step (6), otherwise, we fhd 

,: hk-1) < 0 11 

If q* = i j ,  go to step (6), or if q* = qt-1 , then go to step (1). 

Step (6) : 

The problem (2.4) for all q E (q - , i j) is unsolvable . 

Step (7) : End. 

With t h i s  algorithm, we obtain r unique determined subdivision of 

(2, ,> , in a finite number of subintervals and to each subinterval (qb-1 , qh) 

there is only me optimal point, otherwise the problem is unsolvable in the cor- 

responding interval . 
The above algorithm can be summarized in the following flow chart 



Rcducllon of the parunaterr w 
4 

1. Solve the probl w: I 

Flw Chrrt (1) 
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To demonstrate algorithm I, consider the following example : 

Example (2.1) : 

Let 

where; fo(x)  = 4xl + x2 + 2x3 , fi ( x )  = X I  + 5 2  - 5 3  , f 2 ( 3 )  = - 5 1  + 5 2  + 4 ~ 3  

subject to M : 

Or, we have : 

put = PI , = P2 

since 
2 ELl Xi = n - + C p , = 2 + p l + p 2 = 2 ,  

A0 s =l 

or p1 = 2  - p2 

put p2 = q  implies that p1 = 2  - q  
-A 

i.e. our problem becomes : 

PI ( q )  = m a t  ( ( 6  - 2r] ) s l+  (7 - 21])32 + 5qx3 1 q  > 0 , x  E M} - 
subjectto: x 1 + x 2 + x 3 + x 4 = 3  , 2 x l + 2 x 2 + x 3 + x 5 = 4  , X I - x g + x 6 = 0 ,  



so we have a linear parametric programming with one parmeter in the objective 

function, then we can solve i t  by algorithm I as follows : 

put q = 0 

PI ( g )  = m a s  (6x1  + 7 x 2 )  , 
or Pl(q) = 6 2 ,  - 7 x 2  = 0 ; 

subjectto: x 1 + x 2 + x 3 + x 4  = 3 ,  2 x 1 + 2 x 2 + x 3 + x 5 = 4  , X I  - x 2 + x 6 = O ,  

x , L O  ( r = 1 , 2  ,..., 6 ) .  

The optimal basic feasible solution is found to be xa  = (0,2,0) in the 

optimum simplex table, in which .q - cl = 1 , z3 - c3 = 7 / 2  , z5 - cs = 712 

When q # 0  : 

It  is required to perform an initial sensitivity analysis when c is changed 

frarn (6,7,0) to [(6 - 2q), (7 - 2 q ) ,  5 q ] ,  where g  is unknown . Let us write 

c*=c$gc=[6 ,7 ,0 )$g ( -2 , -2 ,5 ) .  

In order t o  perform the initial sensitivity analysis the following quantities are 

required : 

= ( 0 , 0 , 0 )  ; and 2, = ( - 2 ,  - 2 , 5 )  

i.e. the first critical value of I] is given by : 

2. 41(l) = 0  + 0.7 = 0.7 ; and x(O) = (0.2.0) a t  0 5 I] < 0.7 

our problem becomes 
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or Pl (q )  - 4 . 6 ~ ~  - 5 . 6 ~ 2  - 3 . 5 ~ ~  = o ; 
subject to : $1 + x ~ + x ~ + x +  = 3 , 2x1 + 2 x 2 + t ~ + x 5  = 4 ,  X I  - x 2 + x g  = 0 ,  

x ,  2 0 (r = 1 ,  2 ,  ..., 6 )  . 
By a similar manner, as explained in the algorithm, continue for 

Hence we have the following optimum solution to given optimal problem 

BS : 

x(O) = (0 ,2 ,0)  is optimal for all X E A ( x O )  . Therefore 

0 I < 0.7 1 . 3 s  2<2 
- ~ > 0 - + ~ 2 2 0 ;  ~ < & - + ~ ~ - 1 0 > 0  e - 

_> 4 10Xl - 13 X o > O ;  & < 2 + 2 X o - X 1 > 0  

-9 

i.e. x(O) = (0 ,2 ,0)  is optimal for all q E A ( x O )  ; where 

A ( x O )  = { A  I 7X0 - 10X2 > 0 , 10Xl - 13X0 2 0 , 2X0 - A1 > 0 ; 

A, 2 0  ( j = o ,  1 , 2 ) ) .  L 

Also x(') = (0 ,1 ,2)  is optimal for all X E A ( x l )  , where - 
h ( t l )  = { A  1 l O X 2  - 2 0 , ?Ao - 5A2 > 0 , 5X1 - 3& > 0 , 
13A0 - 10Xl 2 0  ; A, 2 0 (j = 0 ,  1 , 2 ) }  . 
x ( ~ )  = (0,0,3) is optimal for all X E A ( z 2 )  , where 
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Thus, the set of all efficient points is defined as : 

Ecg = { xtO) , x(') , xC2)) . 
The set of optimal parameters A ( x J )  which associated with r'. is defined as : 

* 

A = { A($*) U A ( x l )  U A(x2)}  . (The solvability set). 

3. Solving The Multi Parametric Linear Programming 
Problem (The Parameters in the Constraints) : 

Consider the primal problem : 

Subject to : 

rewriting problem (3.11, using the reduction of parameters as: 

where Z j  = c, + q?, ; q E (q  - , v) be scalar ~aramet~er subject to 

M = { x ,  € X 1 a x j  I . b , x , _ > O  b = O , l ,  ..., n)} 

Now using the duality theorem, we can obtain a new parametric programming 

problem in one parameter (the dud problem) . This dual problem takes the 

form 



subject to : 

N = { y ,  E X I Dy, 2 E* , where 2 = c + 112, q 2 0)  

To solve the dual problem (3.3) we use a new algorithm similar to algorithm(1) 

called algorithm (11) (Dl (q )  algorithm) 

Algorithm (II) : 

Step (0) : 

Put q = U , and solve the linear programming problem with the compact * 

dual simplex method to have an optimal basic feasible solution y* = D-'c . 

Step ( 1 )  : 

Put  q = jlk-1 in (3.3), where q E (r1.N - . Then we apply the compact 

dual simplex method to get the end table for q = qk-1 . If there is one s 

(0 < s < n) , such that 6 ,  = D-';: < 0 go to step (5), otherwise if y~ 2 0 , 
and 6' = D-'zT < 0 . Then 

Step (2) : 

. 
If i j k - ,  = 7 go to step (4), otherwise substitute instead of qk-1 in 

(3.3), go to step (1) and if 6' = D-'E* = 0 , go to step (4) . -- 

Step (3)  : 

Calculate the optirr~unl table, where yh _> 0 , 8; =  if < 0 . Then 

If y' = X , &-, = s-, , go to step (2) 



Step (4) : 

The vector y k  is optimum for all o t , . Put % = , k 
+ = kS1 , and if Bj' = D - l Y  = 0 , go to step (6), otherwise, y' = X , = qk-, 

, go to step (2) . 
C 

Step ( 5 )  : 
. 

If there is one s*(O _< s* < m - n) with 63 = D-'E? < 0 , go to step 
, 
\ 

(6)) otherwise, we have : 

plJj 
q* = mini [v, sup (-- I B,., > 0 , 2,- - c,. < o 

6's. j 

If q* = ?, go to step (6), or if qtW1 = q* , go to step (1). 

Step (6) : 

The problem (3.3) for all q E (q  , 7) is unsolvable . - 

Step (7) : End. 

With this algorithm, we obtain a unique determined subdiviation of 
L 

(2 ,  7) , in a finite number of sub-intervals and to each sub-interval (qk-l , qk) 

there is only one optimal point, otherwise the problem is unsolvable in the 

corresponding interval . 
The algorithm (D) can be summarized in the following flow chart 

Now, applying algorithm (II) to the previous example 2.1. 



Generelitation Algorithm. 

Start 

r c c d ~  t fun  o f  thc paralheters 

Rclurn t o  0, ( 2 

rlow Chart ( l  1). 
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Example (3.1) : 

consider the problem 

2  

and EX, = I 
j = O  

where 

f,(x) = 4x1 + 5 2  4- 2x3 , 

f i ( ~ )  = Xi + 3x2 - 2 3  t 

f2(s) = - 2 1  + x2 + 4x3 

subject to M : 

XI  $ 3 2  $ 3 3  1 3  , 
2x1 +222 + ~ 3  1 4  , 

2 1  - 5 0  , x i  2 0 ( i  = 1, 2 , 3 )  . 
This problem can be reduced by using the reduction of parameters 

Pl(q)  = mas ((6 - 2v)xl + (7 - 2q)xa + 5 ~ x 3  1 v L 0  , E M) , 

subject to : 

X l  +x2  t - 2 3  5 3 ,  

2 x l + 2 x 2 + x 3 5 4 , x ~ - x 2 ~ 0 , x ; > 0  ( r = I t 2 , 3 ) .  

Using the duality theorem to convert the problem with the parameters in the 

right hand side of the constraints i.e. 

Dl ( t 7 )  = mtn ( 3 ~ 1  + 4 ~ 2  I Y N) , 
subject to n : 

y1 + 2 ~ 2  + Y 3  2 (6 - 2rl) , Y l  + 2y2 - Y3 2 (7 - 2rl) , 
y l S y z L 5 t 7 ,  ~ $ 2 0  ( i = 1 , 2 , 3 ) .  

This problem can be rewriten in the form : 
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Dl('?)= man { 3 ~ 1 + 4 ~ 2  I Y  E N }  
subject to N : 

-!/I - 2 ~ 2  - y a + y 4  = ( 2 q - 6 )  , -yi - 2 y z +  ys + y5 = (2q - 7 )  , 
- Y i  - y2 + ys = -5q , y, 2 0 (s = 1,  2, ..., 6) . 

To solve this problem Dl (q) , we can use algorithm-11, and for getting the o.b 

we shall use the dual simplex method . 

put q = 0 

Since dl z: - c; 5 0 , i.e. min Dl(q) = 14 and the 0.b.f.s. is (0,3,5,0) . 
Now, if q # 0 , let us write : 

In order to perform the initial sensitivity analysis, we need to find : 

i.e., 0 = D-'P = (0, -1, -7) , and Y$ = (1,3.5,3.5) . 
The first critical value of q is given by : 

-3.5 -3.5 
q1 = m i n  { T ,  7 } = mi" (3.5 , 0.51 = 0.5 

.. d l )  = + 0 = 0.5 ; and y(O) = (0,3.5,0) at 0 5 q 2 0.5 



Put n = 0.5 : 

our problem becomes 

0 1  (9) - &/I - 4312 = 0 - y 1 - 2 ~ 2 - y 3 + ~ 4 = - 5 ,  

-yl - 2 ~ 2  + Y3 + Ys = -6 , -yl - y2 + & = -2.5 , 
ys 2 0  ( s = 1 , 2  ,..., 6 ) .  

By a similar way, for 9 = 0.6 , q = 0.97 , and q = 1 . 
Hence we have shown that an optimum solution to the given Iast problem is : 

Since, y = (0 , 3.5 , 0) is optimal for all A E A(y) , therefore 
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y(3) = (4.66 , 0.21 , 0) is optimal for all X E A ( ~ ~ )  , where 

A*(y3)={X[100&-97Xo > O  ,Xo-X2>0  , X l - X o  > O ,  

103X0 - 100Xl 2 0 ;  X j  2 0 ( j= 0, 1, 2 ) )  , 
y(4) = (5 , 0 , 0) is optimal for all X E A* (y4) , where 

A * ( ~ ~ ) = { X I X ~ - X ~ ~ O , X ~ - X ~  > O ; X j > O  ( j = 0 , 1 , 2 ) } .  

Therefore, the set of all efficient points is defined as : 

Ei, = ( y(O) , y(') , y(2) , y(3) , . 
The set of optimal parameters A(y) where y, is defined as : 

A* = {A*(yO) U A*(yl) U A*(y2) U A*(y3) U n'(y4)) . 

(The solvability set). 
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