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ABSTRACT 

This paper presents a new effective approach to solving the generalized 
eigenvalue problem Bu =Mu by using a perturbation technique. A 
generalized second-order perturbation theory is adapted such that the perturbed 
solution will be based on the eigensolution of an unperturbed subproblem 
describing the conservative part of the original nonclassically, viscously 
damped system with asymmetric mass, damping and stiffness matrices. Two 
numerical examples in addition to a practical problem are studied to show that 
tk eigensolutions obtained by the current method match, to a great ex?ent, 
so!utions obtained by time-consuming exact methods. 
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1. INTRODUCTION 

The eigenvalue problem is the heart of the linear vibration theory, and its 
solution provides the vibration analyst with rich foundation about the behavior 
of his system from the stability and response points of view. This is the reason 
of the eigenvalue problem being always under focus of continuous, intensive 
research activity everywhere. In the absence of dissipative forces, generally, the 
h e a r  dynamic systems possess classical normal modes [I]. In other words, 
they have a complete set of real orthogonal eigenvectors that can transform the 
system into a diagonal form. ,This form is very delicate for applying the 
powerful modal superposition method to response calculations. So many 
structure problems are lightly damped, and can be assumed to have symmetric 
damping matrix that is proportional to symmetric mass and stiffness matrices. 
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The self-adjoint eigensolution is then an easy task to achieve by powerfkl tools 
(21 because the svstem classical noba l  modes are conserved for proportionally 
& .  

damped systems: These tools become unacceptable even for lfghtiy damp& 
systems having symmetric viscous damping matrices of distribution dissimilar 
to that of symmetric mass and stiffness matrices. The system is then called 
nonclassically damped, and response predictions urge using other techniques. A 
common procedure in the analysis of such systems is to neglect the off-diagonal 
elements of the associated modal damping matrix. Some other methods for 
modal and response calculations of nonclassically damped are available in the 
literature [3-61. 

In modem vibration practices [7,8], active damping and fully active vibration 
control techniques, normally, lead to asymmetric damping and stiffness 
matrices. Moreover, introducing circulatory forces and gyroscopic moments can 
further complicate the eigenvalue problem, as it becomes quadratic and 
asymmetric one. This necessitates the use of other methods like the pioneering 
Duncan's formulation [9] in which the concept of trivial identity was 
introduced by Duncan to linearize the problem. But, before going to algorithms 
that counts on Duncan's formulation or any other methods as in references [lo- 
131, asymmetric systems might possess classical normal modes, and must be 
checked for their existence. Thus one can avoid complexity in computations 
and consumption in time, especially, in large-scale models. Conditions under 
which classical normal modes exist in asymmetric systems are presented in 
references [14-161. 

First- and second-order perhrbation techniques have been proven effective in 
both eigensolution calculations and eigensolution reanalysis problems [17-201. 
Meirovitch and Ryland [21] made a second-order perturbation theory developed 
for the generalized eigensystem hu = Au,  fiuitful for application to 1ightIy 
damped gyroscopic systems with symmetric mass, damping and stiffness 
matrices. Chung and Lee [22] extended the theory for application to the 
generalized eigenproblem Bu = M u  of heavy, but weakly nonproportional 
damped systems. Although the matrix A in the basic perturbation theory and 
the matrices A and B in its extension have no restriction except that they must 
be real, simplifications are necessary to make this theory attractive for 
application to large scale systems where hundreds or thousands of degrees of 
freedom can be considered. Basically, the theory requires the .calculation of 
eigenvalues and right and left eigenvectors of the unperturbed system. This will 
be the gate for any simplification to be significant. 

This paper presents an approach by which the eigensolution by using the 
second-order perturbation theory when applied to asymmetric system can be 
based on the solution of unperturbed conservative system formulated in a 
highly standard eigenvalue problem of single, symmetric positive definite 
matrix. Numerical examples will be presented to demonstrate the method in a 
detailed manner. 



2. NEW FORMULATION 

Consider the free vibration problem of a general linear discrete system 
described by vector differential equation 

where M, C ,  and K are n x  n real asymmetric matrices. M is the mass 
matrix, C is the damping matrix, K is the stiffness matrix, G is an n x  n real 
skew symmetric gyroscopic matrix, H is an n x n  real skew symmetric 
circulatory matrix, and q(t) is a real n  x  1 vector of generalized coordiihes. 
Note here that G is of conservative nature, while H is a dissipative one. if the 
trivial identity 

adjoins Eq. (I), the 2n associated eigenvalue problem and its adjoint will be: 
, . 

T Bui = hiAui, BTvi = XiA vi, i = 1,2, ...., 2n : 
i 

(3) 

where q = ektu is substituted into Eq. (1) and (2)  for expone$tial form 
5 ,{;::. 

solutions, hi is the ith eigenvalue, ui and vi are the correspoi.hiig nght and 
left eigenvectors, respectively, of the non-self-adjoint eigenvalue problem (3). 
The biorthogonality of right and left eigenvectors provides 

where ai is the scale factor ofthe ith eigenvector, tiii is the Kronecker delta. 

A and B are real asymmetric matrices defined by 

Since any real asymmetric matrix can be regarded as a summation of two real 
matrices one of them symmetric and the other one is skew symmetric, the 
asymmetric matrices M, C and K can be written as follows: 



where M o ,  Co and KO are symmetric matrices, and M g ,  C g  and K g  are 

skew symmetric ones. For instance, the calculated symmetric and skew 
symmetric parts of the damping matrix are: 

It should be mentioned here that the skew symmetric matrix C g  represents the 

conservative part of the damping matrix [23,24]. Normally, the true damping is 
contained into the symmetric part Co of the asymmetric damping matrix C 

[23,24]. It will be further assumed that Mo and KO are positive definite. For 
perturbation purposes, if Eq. (6)  is substituted into Eq. ( 3 ,  one can write the 
matrices in Eq. (5) as 

where A. and Bo are considered as unperturbed matrices, and AI and B1 are 
conside:ed as perturbation matrices. The matrices A and B are then called the 
perturbej matrices. An order of magnitude condition is considered here [22], 
which slates that the elements of the matrices Al and B1 are one order of 
magnitude smaller than the elements of A. and Bo. The following formulation 
is suggested for the matrices in Eq. (8): 

where KO and Mo are assumed symn~tric positive definite matrices, A. and 

Bo will be symmetric positive definite and skew symmetric, respectively. 

While the matrices Al and B, m skew symmetric and symmetric non- 
negative definite, respectively. T k  reason for suggesting that new matrix 
formulation in Eqs. (9) and (10j is that the unperturbed and perturbation 
matrices are either symmetric cr skew symmetric. In other words, the skew 
symmetric matrix A, is a permbation to the symmetric matrix A. while the 

symmetric matrix B1 is a pe-turbation to the skew symmetric matrix B o .  This 
permits taking advantages of this arrangement in the modified perturbation 
theory that will be presented later on. Note also here that the unperturbed 
matrices A. and Bo represent the conservative gyroscopic part of the original 
perturbed sywm A and B 



3. GENERAL PERTURBATION THEORY 

The unperturbed eigenvalue problem is assumed to have known eigensolution. 
In general, the accuracy of the perturbation process is pertinent to the accuracy 
of the unperturbed solution. The unperturbed eigenproblem and its adjoint one 
can be expressed as follows: 

where hoi is the ith eigenvalue, and uoi and vo; are iths right and left 
eigenvectors, respectively. The biorthogonality property of the right and left 
eigenvectors satisfies the following relations: 

To produce the perturbed eigenvalues in terms of the unperturbed ones, one can 
express the solution of the perturbed eigenvalues as follows: 

The order of any particular term in Eq. (13) is characterized by the first 
subscript. For example, XI;, ul; and vli are one order of magnitude smaller 

than hot, uoi and voi, respectively. Substituting Eqs. (8) and (13) into (4) 
gives, after collection by order of magnitude, the perturbation systems as 
summarized in (Eqs. (Al) : (A3)) Appendix A. The first-order perturb&ions ul 
and vl can be expressed as a linear combinations of uo and vo, respectively, 
because they span the same space: 

where ~ ; k  and yik are small first order coefficients. Similarly, the eigenvectors 

uz and v2 can be expressed as: 



where Eik and Tik are small second order coefficients. The solutions for first 
and second order perturbation problems are summarized in Appendix A. 
Euations (A4) and (A5) solve for the first order perturbation problem while 
Eqs. (A6) : (A8) solve for the second order one. 

3. MODIFIED PERTURBATION THEORY 

The conservative gyroscopic system that is represented by the matrices A. and 

Bo in Eq. (9) is considered as the unperturbed system of equations. If the 
butcomes of the eigenvalue problem (1 1) of the unperturbed system (9) satisfy 
the orthogonality conditions (12), then one can say that the first- and second- 
older perturbation solutions (Eqs. (A4) : (AS)) are possible. Unfortunately, the 
results of the second order perturbation theory derived by Chung and Lee [22], 
altiough they are quite general with a single restriction that A and B must be 
reai, are not liable for application to the unperturbed system (11). In other 
worls, the solution of the unperturbed (1 1) with the matrices A. and Bo as 
give1 in Eq. (9), violates the orthogonality arrangements as given by Eq. (12) 
and, consequently, mismatches the formulation requirements of the second- 
order perturbation theory. The task now is to modify this theory to make it 
liable for application to unperturbed systems like the one considered in this 
study. The following theorem will clarify this issue. 

Theorem I: The solution of the unperturbed eigenproblem ( I I ) ,  with the 
matrices A. and Bo as defined in Eq. (9), mismatches the forntulatrion 
requirements of Eq. (12) that led to the solution results (Eqs. (A4) : (A8)) of the 
general perturbation theory as derived by Chung and Lee [22]. Thus, the 
solution of the first- and second-order perturbation problems (Eqs. (A2) and 
(A3)) is not possible by using Eqs. (24) : (48) unless - uo, replaces vo, in 

Eqs. (A4) and (AS) with the sign reversed at the right hand sides ofEqs. (A6) : 
(AS). 

Proof: Since A. is symmetric positive definite and Bo is skew symmetric, the 
eigenvalues of the unperturbed eigensystem (11) will be pure imaginary 
complex conjugate pairs and the eigenvectors will also be complex conjugate 
pairs with the following properties [21]: 



where KO and iio are the complex conjugate of ho and uo,  respectively. 
Equation (18) indicates that the left eigenvectors are exactly the complex 
conjugates of the right eigenvectors. This is due to the nature of the un~erturbed - 
eigensystem in which A. is symmetric and Bo is skew symmetric. Also, Eq. 
(18) simply states that there is no necessity to solve the unperturbed eigenvalue 
problem twice to have right and left eigenvectors because they are complex 
conjugates. Now consider the biorthogonality related Eqs (12) upon which the 
results of the general second order perturbation theory in the preceding section 
are derived. And consider an unperturbed eigenproblem of order 2n = 2 having 
2 eigenvalues, 2 right eigenvectors and 2 left eigenvectors. Taking into 
consideration that the unperturbed system is conservative, and upon using Eqs. 
(17) and (18), the following orthogonality conditions hold true: 

If one considers the Kronecker product properties 

1 for i = j 

fir i # j '  

for application to Eqs. (19) and (20), it follows that the results of the 
biorthogonality multiplications in Eqs. (19), if arranged in a matrix form, lead 
to a diagonal matrix, while the multiplications in Eqs. (20) will lead to a matrix 
of zero elements. On the basis of this result, one can conclude that using the left 
eigenvector vo in the biorthogonality relations does not justify the 
arrangements of Eq. (12), and hence a mismatch occurs in the formulation of 
the second order perturbation theory leading to incorrect computations if the 
solution results (Eqs. (A4) through (AS)) are used in their current form. This 
proves the first part of the Theorem I. As a result to this, - uo should replace 

vo in the formulation starting with Eq. (13c), which will be modified to 



Or in a more convenient form to the perturbation process: 

The assumption made to develop Eqs. (22) : (24) is mainly based on the nature 
of the unperturbed system (1 1) in which the left eigenvectors are the complex 
conjugates of the right eigenvectors. If one substitutes Eqs. (S), (13a), (13b) and 
(23) into Eq. (4) and then collects by the order of magnitudes, then three sets of 
problems of different perturbation orders result: 

where 6(0), 6 ~ )  and 6(2) indicate the modified zero-, first- and second- 
order perturbation problems, respectively. Substituting Eqs. (14a), (15a) and 
(24a) into (26), with orthogonality relations like (19) being utilized, the first- 
order perturbation solution is provided as in Eqs (A4) and (A5) except that 
-uo, replaces voj in these equations. Similarly, the substitution of Eqs. 

(14b), (15b) and (24b) into Eq. (27), and upon the use of orthogonality relations 
as in Eqs. (19), the second-order solution will be the same as that in Eqs. (A6) : 
(AS), except that the sign of all terms at the right hand sides of these equation is 
reversed. This completes the proof of theorem I. 

4. SIMPLIFIED UNPERTURBED CALCULATIONS 

Although a contribution is made to the second order perturbation theory in the 
preceding section, the vibration analyst is still in need to a powerhl tool by 
which an unperturbed eigensolution can be systematically generated and a 
considerable save in time can be ultimately achieved for large scale systems. 
Once again, the special form of the unperturbed conservative gyroscopic system 
can be utilized. Meirovitch [25,26] has shown that a conservative gyroscopic 
eigensystem like the one of Eq. (1 1) can be transformed into a highly standard 



eigenvalue problem of a single, real, positive definite symmetric matrix. The 
resulting eigenvalues and eigenvectors of this problem will be real. So many 
fast, efficient algorithms are available for solving the later problem. The 
procedure of transformation is as follows: 

Consider the following unperturbed eigenvalue problem for a conservative 
gyroscopic system where the eigenvalues are normally pure imaginary: 

The complex eigensolution of (28) can be expressed as: 

To transform the problem from complex to a real forn; uo = xo +iyO is 
substituted into Eq. (28). Then both the real and imaginary part on both sides 
are equated to give 

Solving Eqs. (30qb) together, provides 

where 

is a symmetric positive definite matrix. Since A. is symmetric positive it can 
be decomposed by Cholesky decomposition as follows: 

T where Q is a 2n x 2n nonsingular, orthogonal matrix such that Q-' = Q . By 
using the linear transformation 

I the eigenvalue problem of equation (31) can be reduced to the following 
~ standard real one: 



2 = hoz , ho = oo - (35) 

where the last two equations implicitly means that z, is the same as zy  , and 

T - 1  A; = (Q ) B;Q-I = ( Q - I ) ~  B ; Q - ~ ,  (36) 

The two eigenvalue problems (31) and (35) have the same eigenvalues with 

each eigenvalue of A; retains the multiplicity of two. This multiplicity is 
expressed as in Eq. (16). By analogy with Eq. (34), the real and imaginary part 
of uo, can be expressed as follows: 

Thus the complex eigensolution of Eq. (29), can be reconstructed from the 
solution of a highly standard eigenvalue problem of single, symmetric positive 
definite matrix with real eigenvalues and eigenvectors. This, of course, leads to 
a marginal reduction in the computational time. This reduction becomes more 
effective as the order of the problem increases. Another idea for future work is 
that the first and second order perturbation solutions in equations (A4) through 
(A8) can be related directly to the calculated real eigenvectors (37) rather than 
reconstructing the complex eigenvector from these real ones. This will save a 
great part in core of the computer used. 

5. RESULTS AND DISCUSSIONS 

A little problem is to be highlighted first. A hard condition has to be met by 
any eigenvalue problem in order to be solved by the perturbation method 
developed in this paper. The entries of the perturbation matrices A1 and B1 
should be one order of magnitude smaller than the entries of the unperturbed 
matrices A. and Bo. This implicitly means, according to Eqs. (9) and (10) that 

the entries of the symmetric damping matrix Co should be one order of 

magnitude smaller than the entries of the skew symmetric damping matrix Cg . 
The situation is hard tc meet for some applications. Consequently, the theory 
will not be applicable for those applications. To avoid such a situation, the 
symmetric damping matrix Co can be divided as follows: 

where Cop is the part of the symmetric dampins matrix Co that is proportional 

to the distribution of the mass and stiffness matrices such that: 



where a and j.3 are proportionality constants. COnp is the nonproportional part 

that will replace Co in Eq. (10) such that the modified formulation matrices 
will be: 

Or, equivalently, the last two equations can be rewritten as follows: 

With these alternating arrangement in the modified formulation matrices of 
Eqs. (40) : (43), most of the nonclassically damped systems that do not meet the 
order of magnitude condition can be solved by the perturbation technique 
developed in this paper. 

Examplel: 
The following hypothetical 2-DOF system is used to show the accuracy of - .- 
solutions obtained by the current method in comparison with those obtained by 
exact methods. This example slightly violates the condition that the entries of 
A, and B1 are one order of magnitude smaller than the entries of the matrices 
A. and Bo.  This is just to show that the method presented here is capable of 
producing acceptable solutions even when this hard condition is violated. The 
matrices in Eq. (1) are given by: 



According to Eqs. (6) and (7), the resulting n x n formulation matrices are : 

The 2n x 2n formulation matrices in Eqs. (8), (9) and (10) are then given by: 

Comparing the entries of the matrices Al and B1 with those of the matrices 
A. and Bo one notices that they violate the condition as mentioned above. The 
solution results are shown in Table 1. The computed damping ratios for the two 
modes are actually contained into the symmetric damping matrix Co,  and are 

given by = 0.086 and c2 = 0.207, respectively. The results show a 
significant matching between the second order perturbation results and those 
obtained by exact methods. Accuracy to the third decimal is achieved by the 
current method when compared to the exact one even with the order of 
magnitude condition is violated. 

Table 1. Eigenvalues obtained by perturbation and by exact methods. 

Exact solution 
-0.1262+ 1.4548 
-0.l267k 0.5963 

6(0) 
f. 0.1287i 
f. O.1266i 

6(0) + 6(1) 
-0.1287k 1.4736i 
-0.1266 k OS924i 

6(0)  + 6(i)  + 6(2)  
-0.1287k 1.4545i 
-O.l266_+ O.5962i 



Example2: 
This example shows how to handle nonproportionally damped systems in cases 
where the matrix Co does not justify the order of magnitude condition. The 
matrices in Eq. (1) are given by: 

According to Eqs. (6) and (7), the resulting n x n formulation matrices are : 

According to Eq. (39), with proportionality constants a = j3 = 0.35, the 
proportional and nonproportional parts of the matrix Co are given by: 

The 2n x 2n formulation matrices in Eqs. (8), (9) and (10) are then given by: 



Fie. 1 Rotor-bearilia systen; model (afier Abduliabbar el. Al. 1280 

The calculated damping ratios of the two modes are = 0.38 and c2 = 0.30, 
respectively. The results are shown in Table 2. The accuracy achieved in this 
example is also considerable. 

Table 2. Eigenvalues obtained by perturbation and bv exact methods. 

Exact solution 
-O.7220+ 2.255% 
-0.2780 + 0.668 1i 

Example3: 
This example is devoted to a practical problem. A rotor shaft, supported on two 
identical, tilting 5-pad bearings with the bearing load acting between pads, is 
considered in this example as shown in Fig. 1. The bearing data are such that 
the preload factor is taken 0.66, the length is 0.025 m, the diameter is 0.05 m, 
the raciial clearance is 0.001 m, the lubricant viscosity is 0.069 N.s/m. The 
bearing stiffness and damping coefficients are then taken by interpolation from 
the tabulated coefficients by Someya 1271. The disk mass (per bearing) 150.03 
kg, the journal mass is 141.47 kg, the bearing-support mass is 100.8 kg. The 

rotor sti&ess is 4 9 x 1 0 ~  Nlm and the support stiffness is 1 0 x 1 0 ~ .  Damping is 
neglected in both the rotor and the support. The 6-DOF model considered here 
has been frequently used for studying the lateral vibration of rotors in two 
perpendicular x and y directions as shown in Fig. 1. The model equations of 
motion are reported by Abduljabbar et al. [28]. The rotor speed is considered to 
be 1230 radls. The results are shown in Table 3 where the perturbation 
approach developed in this paper is still holding a reasonable accuracy in 
comparison with the exact method. 

6(0) + 6(1) + 6(2) 
-0.7248 + 2.284Oi 
-0.2775 + 0.668 1 i 

G(0) 
_+ 2.28423 
f 0.66781 

6(0) + 6(1) 
-0.7244 + 2.2842i 
-0.2755 + 6648i 



Table 3. Ei~envalues obtained by perturbation and bv exact methods * 

* All numbers in the table should be multiplied by lo3 

6. CONCLUSIONS 

A method is developed to get the general second-order perturbation theory 
fruitfully applicable to the solution of the eigenvalue problem of nonclas$cally, 
viscously damped system. The main contribution here is that the eigensdution 
of a highly standard eigenvalue problem of single, symmetric positive d e f ~ t e  
matrix is systematically employed to generate the eigensolution of an 
asymmetric non-proportionally damped eigenproblem. The later one primarily 
includes asymmetric damping, stiffness and mass matrices introduced by 
gyroscopic and circulatory effects. A high compatibility between solutions 
obtained by the current method and those obtained by exact method is jptified. 

REFERENCES 

1. Caughey, T. K. and O'Kelly, M. E. J., "Classical normal modes in damped 
linear dynamic systems", ASME Trans., J. Applied Mechanics, Vo1. 32, pp 
583-588, 1965 

2. Meirovitch, L., "Principles and techniques of vibrations", Chapts. 4-6, 
Prentice-Hall, Inc., 1997 . 

3. Udwadia, F. E. and Esfandiari, R. S., "Nonclassically damped dynamic 
systems: An iterative approach" ASME Trans., J. Applied mechanics, Vol. 
57, pp 423-433,1990. 

4. Cronin, D. L., "Approximation for determining harmonically excited 
response of nonclassically damped systems" ASME Trans., J. Engineering 
for Industry, pp 43-47,1976. 

5. Hwang, J. H. and Ma, F., "On the approximate solution of nonclassically 
damped linear systems", ASME Trans., J. Applied Mechanics, Vol. 60, pp 
695-701, 1993. 

6. Gupta, K. K., "Eigenproblem solution of damped structural systems", Int. J. 
Numer. Meth. Engng, Vol. 8, pp 877-91 1 ,  1974. 

7. EIBeheiry, E. M., "A method for preview vibration control of systems 
having forcing inputs and rapidly switched dampers", J. Sound & Vibration, 
Vol. 213, No. 2, pp 269-283, 1998. 



8. ElBeheiry, E. M., "Suboptimal bilinear control methods applied to 
suppressing car vibrations", J. Vibration & Control, Vol. 7, pp 279-306, 
2001. 

9. Brandon, J. A., "A discussion of alternative Duncan formulations of the 
solution of nonclassically, viscously damped linear systems", ASME Trans., 
J. Applied mechanics, Vol. 51, pp 904-906, 1984. 

10. Fawzy, I. And Bishop, R. E. D., "On the dynamics of linear 
nonwnservative systems" Proceedings of the Royal Society, London, 
Series A, Vol. 352, pp 25-40,1976. 

11. Washed, I. F. A. And Bishop, R.E.D., "On the equations governing the free 
and forced vibrations of a general non-conservative system" J. Mechanical 
Engineering Science, Vol. 18, No. 1, pp 6-10, 1976. 

12. Newland, D. E., "On the modal analysis of non-conservative linear 
systems" J. Sound & Vibration, Vol. 112, No. 1, pp 69-96, 1987. 

-1 m 13. Munjiza, A., Owen, D. R. J. and Crook, A. J. L., "An M(M K) 
proportional damping in explicit integration of dynamic structural systems" 
i t .  J. Numer. Meth. Engng., Vol. 41, pp 1277-1296,1998. 

14. Inman, D. J., "Dynamics of asymmetric nonconservative systems", ASME 
Trans., J. Applied mechanics, Vol. 50, pp 199-204, 1983. 

15. Abadian, M. and Inrnan, D. J., "Classical normal modes in asymmetric 
nonconservative dynamic systems" AIAA Journal, Vol. 22, No. 7, pp 1012- 
1015,1983. 

16. Ahmadian, M. and Inman, D. J., "On the nature of eigenvalues of general 
nonconservative systems" ASME Trans., J. Applied mechanics, Vol. 51, 
pp 193-194,1984. 

17. Fox, R. L. and Kapoor, M. P., "Rates of changes of eigenvalues and 
eigenvectors" AIAA Journal, Vol. 6, No. 12, pp 2426-2429,1968. 

18. Plaut, R. H. and Huseyin, K., "Derivatives of eigenvalues and eigenvectors 
in non-self-adjoint systems", AIAA Journal, Vol. 11, No. 2, pp 250-251, 
1973. 

19. Meirovitch, L., "Computational methods in structural dynamics", Sijthoff 
and Noordhoff, Netherlands, 1980. 

20. Bickford, W., "An improved computational technique for perturbations of 
the generalized symmetric linear algebraic eigenvalue problem" Int. J. 
Numer. Meth. Engng., Vol. 24, pp 529-541, 1987. 

21. Meirovitch, L. and Ryland. 11, G., "Response of slightly damped 
gyroscopic systems" J. Sound & Vibration, Vol. 67, No. 1, pp'l-19, 1979. 

22. Chung, K. R. and Lee, C. W., "Dynamic reanalysis of weakly non- 
proportionally damped systems" Journal of Sound and Vibration, Vol. I1 1, 
No. 1, pp 37-50, 1986. 

23. Genta, G., "Whirling of unsymmetric rotors: A finite element approach 
based on complex co-ordinates", J. Sound & Vibration, Vol. 124, No. 1, pp 
27-53, 1988. 

24. Holmes, R., "Vibration, of rotor-bearing assemblies", Proc. NATO 
Advanced Institute on Vibration and Wear Damage in High Speed Rotating 



Machinery, Troia, Sebutal, Portogal, April 10-22, Kluwer Academic 
Publisher, The Netherland, pp 279-297, 1990. 

25. Meirovitch, L., "A new method of solution of the eigenvalue problem for 
gyroscopic systems", AIAA J., Vol. 12, No. 10, pp 1337-1342, 1974. 

26. Meirovitch, L., "A modal analysis for the response of linear gyroscopic 
systems", ASME Trans., J. Applied mechanics, Vol. 42, pp 446-450, 1975. 

27. Someya, T. (editor), "Journal-bearing data book", Springer-Verlag Berlin, 
Heidlberg, Germany, 1989. 

28. Abduljabbar, Z., EIMadany, M. M., and Al-Bahkali, E., "On the vibration 
and control of a flexible rotor mounted on fluid film bearing", Computers 
and Structures, Vol. 65, No. 6, pp 849-856, 1997. 

APPENDIX A: GENERAL PERTURBATION RESULTS . . 

The perturbation results according to the order of magnitude as derived by 
Chung and Lee [20] are: 

where 0(0),  O(1) and O(2) indicate the zero-, first- and second-order 
perturbation problems, respectively. Note here that Eqs. (Al) are similar to Eq. 
(12) of the eigenvalue problem for the unperturbed system. Substituting 
equations (13) into equation (A2), and upon using equations (1 1) and (Al), one 
gets the first order perturbation solutions: 

T a j E v  = voj(Bl -hOiAI)uOi /2(hOi -Aoj) 

T a. rYy .. - - v o,( . B I -hOiA~)uOi /2(hoj -hoi): 

j i , j = 1 , 2  ......, 2n (A?) 
T ~i~ = yii = -vOiA1uOi /4ai 

T h l i = v o i ( B 1 - h o i A l ) u o i / 2 a i ,  i = j .  i Z 1 , 2  ,...., 2n (A5) 



Substituting equations (14) into equation (A?,), and upon using equations (1 I), 
(A4) and (A5), one can extract the second order perturbation solutions.' When 
i #  j ,  

When i =  j ,  




