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ABSTRACT 

0 
In the present study, a steady laminar of two 

dimension, isothermal and incompressible fluid flow 

through a curved channel of different curvature ratio 

has been studied theoretically,The governing equations 

of flow are derived in-terms of stream function and 

vorticity under the parabolic initial flow condition. 

A numerical solution, based on the finite difference 

method, is used to investigate the effects of Reynolds 

number, the angle of curved channel and the channel 

curvature ratio on the flow properties through curved 

channels. These properties, which are considered in 

this investigation, are; the axial ve1ocity;the radial 

velocity; the pressure on the inner and outer walls; 

the pressure loss coefficientithe friction coefficient 

and flow separating point. The separating point was 

found to depend on the value of channel curvature 

ratio, it moves away in the upstream flow direction 

by increasing the value of curvature ratio. 

Fluid flow through curved pipes or channels has 

become of importance in a wide range of engineering 

applications, for example in the heating and cooling 

coils used in heat exchangers and refrigeration equip- 

ment. Curved conduit flows are encountered in many 

engineering problems, from heat exchangers to meand- 

ering rivers. 
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Unlike the case of straight channel, very little 

has been published concerned with theoretical and 

experimental studies of the flow through curved pipes 

or channels. IT0 [ I ]  made experimental study of fluid 

flow through smooth curved pipe of circular cross- 

section. He found that, for the case of turbulent 

flow, the static pressure at the outer wall has higher 

values than that at the inner wall and the pressure 

loss coefficient increases with the angle of curvature 

increases. Launder and Ying[2] studied the secondary 

flow in ducts of square cross-section. They showed 

that the ratio of secondary to primary velocity is 

greater in the case of rough duct than that for the 

case of smooth duct. 

Yukimau, et. a1[3] studied experimentally the hydra- 

ulic losses and the flow patters in the wavy and 

quasicoil bent pipes. Their results obtained may be 

summarized as follows; the hydraulic losses in the 

quasi-coil pipes composed of 90" bends and 90' screw 

type elbows are increased as the connecting angle 

increases. The losses in the wavy bent pipes are 

larger than those in quasi-coil pipes. Kulb andseader 

[ 4 ]  studied heat and mass transfer phenomena for viscous 

flow curved circular tubes. They showed that the 

friction losses of curved tubes are higher than those 

for the straight tubes. Mitsunobu and cheng[51 studied 

the laminar flow in the entrance region of curved 

parallel-plate channels. They showed that peak value 

of axial velocity moves away to the inner wall and 

also the radial pressure gradient has a higher value 

at the outer wall than that at the inner wall. 

The main object of the theoretical work presented 

in this paper are; Determing the effects of Reynolds 

number, the angle of curved channel, and the channel 



curvature ratio on the friction coefficient, pressure 

loss coefficient, the axial and radial velocities and 

the static pressure at both of the outer and inner 

walls. Also establishing a clear idea about the effect 

of channel curvature ratio on the flow separating 

point, for different values of flow Reynolds number. 

NOMENCLATURE 

Normal distance from the center line of 

curved channel to 'the wall (half width of 

curved channel ) 

Pressure loss coefficient = A P / ~ P v ; .  
Curvature ratio (a/E) 

Friction factor ratio (fc/fs) = ( A P / ~  ? v;) . 
( 2  a/E 8 )  

Friction factor for the case of curved 

channel. 

Friction factor for the case of straight 

channel. 

Static pressure 

Dimensionless pressure = P/ ( f  f Vi) . 
Curvature radius 

Distance from the center of channel to any 

point on the width. 

Dimension-less radius. (1  + D.R1)/D. - 
Dimensionless distance, R1 = Rl/a. 

Reynolds number = (Vm. 2a) / v  . 
Velocity components in El and 0 directions. 

Dimensionless velocity components in R and 8 1 
directions (%.a/v , ;/vm). 
Radial velocity per mean axial velocity (;/vm) 

~xial mean velocity. 

Fluid density 

Kinematic viscosity 

Angle of curved channel 

Stream function 

Vorticity. 



SUBSCRIPTS 

I : Counter in radial direction 

J : Counter in 0 direction 

N : Maximum counter in radial direction 

0 : Initial condition 

1 : Condition at any cross-section 

2 .  A N A L Y S I S  

The following assumptions apply to all the ana- 

lytical work described below; 

( 1 )  The flow is steady, laminar, two-dimensional, 

isothermal and incompressible. 

(2) The gravity forces are neglected compared to the 

other forces. 
a $  (3) The higher order of , is neglected. 

With the above assumptions and referring to 

Fig. ( 1 ) , the basic equations governing the flow 

through curved channel are ; 

Continuity equation 

Momentum equation in E l  direction 
- - a i i  u -  v t-• aii  v 1 a 6  a 2  ii 1 - - - = -  Gq t 3  [ - + -. 

a i i ,  H t B ,  a e  i + B 1  a E ;  E+El 

Momentum equation in 6 direction . 



Momentum equations, Equs(2) and (3) 6iay be written in 

dimensionless form as follows; 

Dimensionless momentum equation in ft, direction 

Dimensionless momentum equat4on" in 0 direction 

a  v - - +  D.V - D a v . - -  4D 

a R1 (l+D.R1) (~+D.R~) a e 2  Re(l+D.R1) 

a u  Re ;)P 
= - 7  - (5) 

a  e 4 a e 
where, the dimensionless parameters; R1; V; u; P; D 
and R are defined in the nomenclature. e 
The dimensionless velocity components u and v may be 

calculated from the following relations ; 

v = a $  (6) 

aR1 
u = -  D a $ - (7) 

(I+D.R~) a  e  

while the radial velocity per" mean axial veloci-ty was 

calculated from the following relation; 

Using Equs(6) and ( 7 )  in the Equs(4) and (5), and 

after eliminating the pressure term, the following 

equation of motion may be obtained ; 



Re.D . 
v 2 <  = ( -  a J, . - _  a 2 a JI - .  a - 1 . 5  (9) 

2 ( 1 + ~ . ~ ~ )  aR1 a e R~ a e 
aR1 

where ; 

< = v 2 +  
and 

9 2  = - a 2  + D a . -  
a R; I+D.R~ a R1 

In order to predict the pressure loss and friction 

ratio coefficients, the following equations, [51. were 

used ; 

In Eq (1 1 ) is the average pressure over any 

cross section of the channel. 

1 -. a 

By using the finite difference approximatiom and the Crank- 

Nicolscm method, Eqs(4, 5, 6, 8, 9 and 10) are converted into 

the following skiltaneaus linear equation; 





C16 = U 
'(I+l,J+l)-'(I-1,J+1)-'(I+1 ,J)"(I-1 ,J) 

(ItJ) ' 4 . AR, 

The value of axial velocity at any point of channel 

cross section may be obtained from Eq(gl. While the 

values of radial velocities at points (I =1,2,..N) 

were obtained from Eq ( 5 ) .  After obtaining all values 

of axial velocity, the accuracy of the numerical 

technique was obtained from the following relation; 

*(J) - '(J+I) -4 Error = 5 10 

(J) 

where; 
Q ( ~ )  

is discharge at section (J) and Q 
(J+1) 

is 

the discharge at section (J+1) . 
>-- 

The dimensionless static pressure distribution, 

at the inner wall (1.1 ,J=J) and at the' outer wall 

(I=N+l,J=J), was calculated from the linearized finite 

difference Eqs ( 3  and 5 ) .  



The calculation procedure and the computer prog- 

ram used to solve these equations are given in [6]. 

In the calculations,the following boundary and initial 

flow conditions are used; at the inner and outer walls 

the velocities are equal zero, $= -1 at the inner wall 

and $= 1 at the outer wall. While at 8= 0, the follow- 

ing conditions are used; 

3 .  RESULTS AND DISCUSSION 

3 . 1 .  Ax ia l  v eZoc i t y  d i s t r i b u t i o n  

A representative selection of the axial velocity 

profiles, for different values of 8 are shown in Fig. 

(2). From this figure it can be seen that the axial 

velocity decreases in the inner half of channel by 

increasing the angle (8), while the axial velocities 

in the outer half of channel are increasing by 

increasing the angle (8). This is due to the centri- 

fugal forces which occur in the flow. By increasing 

the angle 8, the flow starts to separate on the 

inner wall, as shown in Fig. (1). This point of flow 

separation was found to depend on the value of channel 

curvature ratio (D); it moves a way in the upstream 

flow direction by increasing the value of (D), see 

Fig.(3). The peak values of axial velocities, which 

occur in the outer half of channel, have higher values 

for the case of higher curvature ratio than those for 

the case of smaller D. This is because the centrigugal 



forces are increasing by increasing the value of (D). 

From the results illustrated in Figs (3 and 4) for 

Re = 500 and 2500, it can be seen that the axial 

velocity profiles are similar in their trend and the 

effect of R on the axial velocity is not quite clear. e 
This is because the initial flow velocity was conside- 

red as the mean value of axial flow.velocity. 

3 . 2 .  Rad ia l  v e l o c i t y  d i s t r i b u t i o n  

The radial velocities distributions at different 

sections are shown in Fig. (5) . From this figure it 

can be seen that, at constant values of Re and D, the 

radial velocity decreases by increasing the angle 8. 

The absolute value of this velocity in the inner half 

of channel is higher than that in the outer half of 

channel. This is due to the decay of axial velocity 

in the inner half of channel. The effect of changing 

the value of D on the variation of radial velocity is 

quite clear in Fig.(6). The radial velocity increases 
- - 

with D increases and the peak value of u moves to 

the origin by decreasing the value of D. Concerning 

the effect of Re on the , the results for different 
values of Re are shown in Fig.(7).The radial velocity 

decreases by increasing the value of Re as shown in 

Fig. (7) . This can be explained according to Equ (8) , if 
Re increases the value of 5 decreases. 

3 . 3 .  P r e s s u r e  d i s t r i b u t i o n  

The results of dimensionless pressure distrib- 

ution at the inner and outer walls for different 

values of D and Re are shown in Figs(8, 9 and lo). 
It is noticed, from these figures, that the pressure 

at the inner and outer walls for any angle 8 increases 



by increasing the curvature ratio. The effect of 

changing the angle ( 8 )  on the variation of pressure 

is also clear in these figures; where the value of 

pressure decreases with (8) increases, for all values 

of D and Re tested here. The effect of changing the 

value of Re on the dimensionless pressure distribution 

at the inner and outer walls is also clear in Figs(9 

and 10). From these figures it can be seen that the 

variation of pressure along the curved channel increases 

by increasing the Re. This is because the inertia 

forces are larger than the viscous forces for the 

case of increasing the value of R . From Fig. (8) it e 
can be seen that the pressure at the outer wall(Poi) 

has a higher value than the pressure at the inner 

wall along the curved channel. But the variation of 

pressure difference between the outer and the inner 

walls is small because the surface'length of the outer 

wall is longer than the length of the inner surface. 

This variation increases by increasing the value of(D). 

3.4. Pressure Zoss coefficient 

The variation of pressure loss coefficient (Cp) 

with the angle of curved channel (8) at different 

values of D and Re is illustrated in Figs (11 and 12). 

At any value of 8 ,  the value of C decreases by increa- 
P 

sing the curvature ratio; see Fig.(ll). This is due 

to the decrease in the value of pressure drop by 

increasing the curvature ratio (D) as was discussed 

in subsection 3.3. Concerning the effect of Re on the 

variation of C 
P' 

the calculations were made for 

different values of Re and the results are illustrated 

in Fbg.(l2). From this figure it can be noticed that, 

at constant value of 8 and D,C decreases by increasing P 
the value bf Re. Also from this figure it can be seen 



that the value of C increases sharply by increasing 
P 

the value of 0 ,  for all values of %.While for(D>0.3). 

the rate of increase of C is slightly small, see Fig. 
P 

(11). 

3.5. Friction coefficient ratio 

The friction coefficient ratio (£')was calculated 

at different values of D, Re and 8.  The results are 

illustrated in Figs(l3 - 15).From these figures it is 
noticed that, the value of f' decreases with the angle 

8  increases for all tested values of D and Re. The 

friction factor f' decreases by increasing (D), see 

Fig.(l3).The value of f' is equal to zero at separating 

flow point, which moves back in the upstream flow 

direction by increasing the value of D. This is due 

to the increasing value of centrifugal forces by 

increasing the value of D. For D = 0.1 the separation 

flow phenomenon does not occur along the inner surface 

of curved channel, which is assumed here to have angle 

of curvature of 30°, see Figs(l3 and 14). Sut for 

D = 0.3, the flow separates at €I= 22.8', and for 

D = 0.5, the flow separates at 0 =  13.8'. While for 

D = 0.7, the flow separates at 8 =  10.8'. From these 

figures it can be concluded that, the separating point 

in curved channels depends on the value of curvature 

ratio of these channels. While the Reynolds number has 

no significant effect on the separation flow phenomenon 

through curved channels see Fig. (15) . &  This may be 

connected with the assumed initial flow condition, 

which indirectly includes the Re. 



4 .  C O N C L U S I O N S  

The be ha^ Bur of fluid flow through curved 

channels with different angles of curvature was stuided 

numerically. From the theoretical analysis given in 

this study, the following conclusions may be drawn : 

(a) The general flow equations for fluid flow through 

a curved channel are derived in terms of angle 

of curvature, curvature ratio and the Reynolds 

number. The equations are formulated in the finite 

difference form. 

(b) The variation of inner pressure, outer pressure, 

axial velocity, radial velocity, pressure loss 

coefficient, friction coefficient ratio in curved 

channel has been shown to depend significantly on 

the angle of curvature, the curvature ratio and 

the Reynolds number. 

(c) The separating flow point was found to depend on 

the value of channel curvature ratio; it moves back 

in the upstream flow direction by increasing the 

value of curvature ratio. For example, if fluid 

flows through a 30' curved channel, the flow does 

not separate at curvature ratio = 0.1. But it 

separates at curvature ratio greater than 0.1 as 

follows ; 

i ) At curvature ratio = 0.3, the flow separates 

at 0 =  22.8'. 

ii ) At curvature ratio = 0.5, the flow separates 

at 0 =  13.8'. 

iii) At curvature ratio = 0.7, the flow separates 

at 8 =  10.8'. 
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