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CONCENTRATED FORCE ACTING ON AN ELASTIC INCLUSION IN
A THICK-WALLED TUBE

by
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Abstract

A two-dimensional problem is investigated on the action of 2 concentrated force applied to the
axis of a circular cylindrical, elastic inclusion embedded in an elastic thick-walled tube. This is
a generalization of an indentation problem in an infinite space previously studied by Noble and
Hussain [1] and revised by the author [2]. The probleru is solved using a fast numerical approximation
technique and numerical results are presented that allow to evaluate the angle of contact and to
establish a comparison with the case of embedding in an infinite space.

1 Introduction.

Among the static problems of the Theory of Elasticity that have numerous applications in Engi-
neering. the indentation problem is one of the most interesting. Due to iis complexity, this problem
is solved exactly only in very few special cases and numerically in general cases {3].

In their paper [1], Noble and Hussain reduce the problem of inciusion of an infinite circular
cvlinder in an infinite space to that of solving an airfoil integral equation, under the constraint
that the elastic parameters of the media satisfy a certain relation. The same problem was treated
by Omar and Hassan [2] who used a simpler technique to solve the dual series equations to which
the problem was reduced in the general case. They showed, in particular. that sufficiently accurate
results may be obtained from the first few iterations of their solution without need to transform to
the integral equation.

The problem is solved following the same technique as in 2] and numerical results are given and
discussed for the angle of contact between the inclusion and the tube. Comparison is established
with the case of embedding in an infinite space. In particular, it is showr that the present results are
the same as the corresponding ones in [2] when the shear modulus of the inclusion is much smaller

than that of the outer medium.

2 Forrhulationvof the problem

An infinite. isotropic, elastic circular thick-walled tube of radii ¢. & {a < 5) has an inclusion in the
form of an infinite circular cviinder of radius a of another isotropic elastic material. A concentrated
force F per unit length acts on the axis of the cylinder and perpendicular to it. Accordingly. a
separation region establishes in the stressed medium, the bounds of which need to be determined.
It is well-known that this problem reduces to the solution of a biharmonic equation for the stress
function under proper conditions. This is further reduced to the solution of a pair of dual series
equations involving the unknown angle of separation, the solution of which may be carried out
numerically using an expansion in a small parameter, ¢ = a/b. representing the ratio between the
inner and outer radii of the rube. This allov.s to examine the case when the outer radius tends to

)

Au.!(\
Let us introduce a'set of cylindrical coordinates( r. 8. =} with s~2:¢s coinciding with the axis
of the inclusion, the force acting along the polar axis # = 0. Ir what follows, we briedly quote the
fundamental equations to be used in the sequel. The same notations as in {1} will be used.
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Fig. 1 Goematry of the problem.

(i) The stress components are expressed in terms of the stress function @ as{follows
{
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(i) Strain-stress relations :
2Geyy = {1~ v)o, ~vog, 2Gega = (1 —v)op —vo,. 2Geq = Trp, (2)
where (7 ard » are the coefficient of rigidity and Poisson’s ratio respectively.
{iii) Strain-dispiacement relations :

(iv) Boundary conditions :
Assuming 2 frictionless contact between the two bodies and a rigidly clamped outer surface

of the tube. the boundary conditions are :

o{a,8) = ol{a.9), 0<8<w. (4)
re(a,8) = 7l5(a.8), 0<8< 7. (5]
u(a,8) = upla.6), 0<8<. (6)
o{a,8) = 0 n<f<n, (7)
v (b,8) = 0 06w, (2)
ug(b,6) 0 0<4<m, (9)

where the region of contact is — < § < 7. and the quantities referring to the inclusion are
denoted by a “dash™, while the undashed quantities are for the tube.
Tre boundaty conditions must be completed with the condition of univaluedness of the dis-
placement

uslr, 0) = welr. =) =0, 0<r<h iy

Alsa, the cliowing global equilibrium condition should hold for both the inclusion and the

tube :

.
F:—'Z/ (0. cos — Trasinf)r db. (i
Jo
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From symmetry considerations, the stress functions ¢, &' may be shown to have the following

express}ons :
o’ S - [(1~20p logp cosf —2(1 -V )p sin b}
4r(1 - v')
+ AL P2+ AL P cosB + Z [A; ot B p“] cos nb, (12)
n=2
o = — 1= 2)plogpcosd - 21 - v)phsind] + Aop® + [Arp® + Dip*| cosé
dr(l—-v) " © L
- oo
+ Bologp+ 3 [A,, PP By o+ Cr p "4 D, p"‘] cos né, (13)

n=2

where p = r/a and {A%}, {BL}, {An}, {Bx}, {Crn}. {Dn} are coefficients to be determined.
The following expressions for the stresses and displacements in the two media are finally ob-

tained:
(i) For the inclusion (0<p <€)
, 1 E;cos? , PR
g, = 2Egﬂi—4(1_y/) [(1—2u)p+(3—2u)p }
1
—§Z|(n—2)p"——np" 2] E, cosné (14)
n=2
, 1 Eycosf 1] 1 & n a2l ;
oL = §E0 TR l3p—-p J+§§{(n+2)p —np }Encosnb’ (15)
. _  Eisinf ¢ -1 1 n -2 .
Crowl Lt ]W?;W = #""?] Ensinnt (16)
Jul 1 , 2G'6 ~ Ejcosf ;, , ;e ,
QG: = 5(1‘V)Eop+ . COSGTS(I—V’) L(1—2u)(1—~4u)p +2(3—4L‘/)logp]
1 & (n~-2+4v 4, n .y - -
_2’2[ e o -n-lﬂ ]Encosn(? (17)
U 266 E;cosé s " 2 ,
- 222 Bl Rty 1 T — 4t =1 =23
26"~ - cosH.B(I__Vl) [(1. 2')(5~ ')t~ 1-2(3 4u)1ogp]
’ I & [m4d-4 L, n ne1 .
*2?;2[ at1 £ Tno1f ]E"Sm"g _ (18)
(ii} For the tube (e < p<1)
e+ (1~ v)p?

1
a = Lo~
T 27 (1 - Ww) + €2

_Ejcosé [(1—21/)(3—4;/)—8 ~

{1 -2t + €2 ]

N 3 iq_ -1
TH1-) Gt e F TSR+ e Ta

oz
- Z i(n +1)(n = 2)Anp" =~ n(n - 1)Bp 2

Hin - Din+2)Cop™" + n{n - I\an‘“'z} cos né. (19
T .oee—{1~vip
oo = _-_;Eo“ Q) — € .
Eycosf {(1=2003=4v) - _,4 - (1= 2w)et + €
- - P+l =) -3 ———p
L= (3 —dv)+ (3 —qv) + ¢t

(8]
S
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4
+ 3 [(n 4 10+ 2)Anp" + nln - 1)Bop"?
n=2
+(n = 1)(n = 2)Cnp™™ + n(n + 1)Dyp™"?] cos . (20)
Eising [(1-2)(3-4vj—-& 4 o (1=t &
, ~(1-2
7o Ml—w[ Bodn+ea  * (A-2p™ + 5T e
oc
+3 n[(n 1A (= 1)Bap™ 2 = (= )Cap™" = (n + 1)an-"—2] sinnf,
n=2
(21)
Uy 1 1-20 ., 1 Eicosf o
LA B P —12(3 - 4 ¢
263 IT-wrafP™? JE°+SU-W (3 - 4jlogep
Tip~24 (1~ 4vilp? T3 ot . nel
- - Anp™™}
R T ey EICSELE
+nBup" = (n+2- )Cpp~ ™t - nD,‘p""”} cos nf. (22)
g E,siné ; R T +(5— 1)Tgp? =Ty
—= = =23 -4 -2
263 8(1~u)[ (3-dv)logep -2+ G-d+e
fe- =3
+ Z (n+4-— 40)Anp™H F 0B 4 (n - 4+ 4)C 07!
+nDnp~ " sin nd. (23)

where & is the rigid body displacement of the inclusion in the force direction and the coefficients

are interrelated by the relations :

I‘l—.ez-—(l—Qu)(B—-iu)], F3=62§(1—2V')£2+1], F3=(1—4u)—2v1~2;.")€2+e4

F 1 (1-2v"a?
= . Al = 2P Al = T Fy
E, o 0= 3¢ Eo, T
a“ 2 Ky a*e* Fy
Ag = —— - Ay = .
TS -2y - € VT3 - av) = €4 )
1-2 . E a®Fy (1 -20)3 = 4) - ¢
Boe ¥ _pEo po_ toLd =
120 +¢€ 2 8(1-v) (3 =4} + €1
and for (n > 2}:
a’E; a’E
B L Y
"o ot 2An-1)
(n+ N (n+2)4, +nin - NB. ~in~-1jn+DCa+ni{n~ 1D, = ~-F..
n{n+ A, +nin ~ 1NB. — nin—NC,-an-10, = 0
(n—-2+ e A, e PR~ in+ 2 - 4V, - T DL = 0L
fe ) a0, = 6

tn+4- 4y)c‘“'1A4n Lo TR - ia—
The boundary conditions (6 and 17} give the feliowing dual serles egquaiious in the wnknowas
Eg. Equn 2 2). tand 7

Ccosnf = 0. L f

Eo =

Pl e
br

1t
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Figure 12. The values of Ay for v = 0.0,
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1 . Kn
5 kg Ey + cE£ycosf + ?_::2 F:TE" cosnf = —wb’ cosl, 0<0<y (25)
where
k—KO x _ Ry -8, r__K_;; 6,_0’6 a*g
T2k, T T2k, T 2K, aly’ G”

(1—20)(1 = ¢?)
(~2w)y+¢2°
K = o(t—=2/)~(1-2),
Ky = oft~)+{1-v),
Ky = al'+1L,
(B vy =l )+ (1= 2)3 - dv) - L Ay o= (1 -2~ 4r)

Ko = a(l-2/)+

L 8(1 ~ w)[(B - 4w) + ] g(1~vy)
=2 Lf . A afE+2(l - o)1 - W)
Sy = :—5:‘:{76210[1+2(1—1/)(1—Lu)]-6(1+ Py e
00+ - - w)] | 48{L+ 21 = )L = 2PN,
+2 (1 - 3 dy + (3 - 4v)? ¢
L 18+ 160 F21 - )1 -2 192(1 + 2(1 — v)(L - 20)]}
+2((3_4u)_ 8 +3£14U yi-20) [+(§_,;.U,))(: 2
19281 + 200 ~ v)(1 = 20"\ 4
- TRy )c +O(Eﬂ) },
S; = %51{2[9-+8(1~u)(1—2u)]—2-152
g 1 ) - 2
+<9—2‘9'8(13_"4)£1 2"”>("+O((“) }
51 = %l_%;—"f{zo[u(z—u)(l-2;,-)]~60c2+o(c‘)},
S5 = %:%;155{3(254‘8(1—u)(i—?.u)]+0(62)}.

S. = O (sz("‘“\) >0,

3 Solution of the dual series equations

To find the approximate solution of the dual series equations (24} and {25}, we make use of the
method suggested in [2). Applying the operator (D + D~') on equation (25), where

pr=% py= /0 e a8,
df Jo
one ge‘ts ; o R
-3 koFo 84 Ex (1*712/) snnf =0, 0<8<7 {26)

n=2
Equations (21) and {261 are sufficieni to determine afl the unknowns. Choose any integer M > 1,

one can rewrite equation £26) in the truncated form

\ 2 M
e N il = s B . foym
- EAUI-L"J + 3_‘ Epsinaf = Fysind 4 ‘?:2 w E. sinmf, 0<h<y. {27)
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Thus the M-th crder approximate solution of the dual series equations {24} and {27} woud be

M+1
En=amEBit D Km tam Em. n=0,12 (28)

m=2

where {a;,} are the solution of the pair of dual series equations

1 had . sin mé
~-3 kgc,;49+§ np sinnf = — 0<6< 9,
m=1,2 -, M~1, (29)
1 oo
5 c.;_.,€+z a.mcosnf = 0, n<f<r,

n=]
2.
2%i, for » running over the set of values 1, 2,---, M + 1, form a set of (M + 1)
homogereous I-zar, algebraic equations in £, (1 £ n < M + 1). Since Ey = 0. the determinant
of the matri his system of equations must vanish, from which we can determine the angle 5
for the A-th order of approximation. One then calculates the values of the coefficients Ej and

{En} in>2 asin[2).

which is given !
Equations

4 Numerical results and discussion

Some numerice caiculations for the angle of contact n were carried out. Each one of the figures 2-7
of the angle 77 against the physical parameter z = o / (a + 1 for diferent values
of the geome:=iza: parameter € and for a definite values of v and v
For the of comparison with the results of [2], we have plotted on figures 13 the difference
An between tiz actual angle and the corresponding one for the case ¢ = 0 {case treated in {2]).
The resuits show that:

shows the cu

1. When i = 0.5. i.e. when the material of the inclusion is incompressible. the difference Anis
almost cozstant as long as o < 4.
I

2. For a:5 < 0.3, the difference An in general does not excced 10°. whatever the values of v, v
= g

and a.

3. When « ~ x.i. e. when G' € G, An — 0 whatever the values of & " and ¢,
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Figure 2. The values of 7 for » = 0.0,+" = 0.0
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Figure 3. The values of 7 for v = 0.1.v" = 0.1
n 96° T T ; .

HH

W w i
SCoooo
OV e B0 ED e D

mN ™ m m

{t 0.2 0.4 0.6 [UN i

229



Hassan A. Z. HASSAN

Figure 4. The values of 77 for v = 0.2,0/ = 0.2
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Figure 6. The valuss of pfor v = 0.0,/ = 0.5
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Figure 7. The values of pfor v = 0.4.0" = 0.5
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Figure 8. The values of A7 for v = 0.0,/ =0.0
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Figure 9. The values of A7 for v = 0.1.v7=0.1
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An

An

Figure 10. The values of A7 for v = 0.2,+' = 0.2
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Figure 11. The values of Ay for v = 0.0,+ = 0.3
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