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ABSTRACT

This paper proposes a procedure for solving a ggcoonstrained optimal power dispatch
(SCOPD) problem under normal and emergency comditigsing ant colony optimization (ACO)
algorithm. The objective function is to minimizeetmon-linear generation cost function by
optimizing the control variables of the generatoesl power under equality and inequality
constraints.

The ACO algorithm is applied to 5- bus system, IflEE standard 14-bus and 30-bus systems. In
addition, an application of the proposed algorittoma real power system at the west Delta
network (WDN) as a part of the Unified Egyptian Wetk (UEN) considering the valve-points
effects has been demonstrated. The results obtaired¢ompared with those obtained using a
conventional linear programming (LP), the fuzzyeln programming (FLP) technique and genetic
algorithm (GA). Simulation results show that thegwsed ACO algorithm for the SCOPD is more
accurate and efficient, especially with increaghmgysystem size.
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1. INTRODUCTION dual (marginal cost) solution to the problem withou

Security constrained optimal power dispatch the need for numerical iterative optimization
(SCOPD) is one of the optimization problems in algorithms. No conflict of interest is caused itth

power systems that optimally allocate the power (ED) model is used as an optimization-based
demand among committed generators in the mostélectricity auction. C. Chen and N. Chen [2] solved
economical manner while satisfying system security thé ~ economic  dispatch  problem  considering
constraints. The problem becomes more complicatedtransmission capacity constraints using directcsear

due to the non-linear nature of the objective fiomct ~Method (DSM) to handle a number of inequality and
and constraints of real life problems. The objectiv quality constraints and units with any kind oflfue
function may be convex or nonconvex based on the€0St functions. For improving the performance of
characteristic of the supply. The next paragraph direct search proce(_jur_e, a novel strategy with imult
presents the different optimization methods that ca level convergence is incorporated in the DSM to

problem. searching process. Pathoet al [3] presented a

methodology for solving the dynamic economic
dispatch (DED) problem using evolutionary
programming (EP) combined with sequential
quadratic programming (SQP) that consists of two

Madrigal and Quintana [1] presented an
analytical solution to the classic economic dispatc
problem using duality theory to derive an exprassio
to compute both the exact primal (dispatches) and
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parts. The first part employed the property of EP the mathematical model of ACO algorithm that based
which can provide a near global search region &t th on the probabilistic transition rule and the phevom
beginning. When the specified termination critdfa  updates. In Section 1V, the ACO algorithm is
EP are reached, the local search SQP is applied tamplemented to the ED problem. Section V contains
tune the control variables to obtain the final oyati the results obtained by the application of the ACO
solution. Xia and Song [4] proposed a novel algorithm to the 5-bus, IEEE-14 and 30 bus test
approach based on the analysis of the process obystems under normal and emergency conditions
solution of ED problem by Lagrangian Relaxation, which are compared with the results obtained using
called dynamic queuing (DQ) algorithm. Yan and the conventional LP, fuzzy linear programming
Quintana [5] presented an improving an interior- (FLP) and GA. Also, the ACO algorithm is applied to
point based OPF by a predictor-corrector primalkdua a real power system at the WDN system as a part of
log-barrier (PCPDLB) method as a sequence ofthe Unified Egyptian Network (UEN). The results
linearized sub-problems. Jabt al [6] presented a  show that, the proposed algorithm is more accurate
homogeneous interior point (HIP) method for the ED and efficient in solving the ED problem.

problem by approximating the network constraints » pROBLEM FORMULATION

through the DC load flow, and the transmission .
losses through the B-matrix loss formula. latial Th? SCQPD problem (?an express as a constrained
optimization problem as:

[7] analyzed the mixed integer OPF based on the

interior point cutting plane method (IPCPM). Also, Minf(x) (1)
they presented a new base identification method s.t: gx)=0 5
based on the improvement of IPCPM to solve the h(x 0 )

problems of degenerate solutions and convex
combination solutions that depends on the diffezenc . ;
between nonzero element number of optimal solution generators fuel costs, transmission line Ipsm,...
and rank of coefficient matrix. Vlaisavljevet al [8] g(x) represents the equality constraintf(x)

demonstrated the feasibility of using a fuzzy ekper represents the '”eq“a"Fy constraints, ands the
system, based on interactive fuzzy linear vector of the control variables that may be gemerat

programming (FLP) to optimal power system real power outputs, generator voltages, switchable

rescheduling problem, incorporating the preventive reactive power and transformer tap setting. In this

redispatch. Their aim was to explore the feasjbdit paper, the objective _function Is the _non-linearl fue
creating an intelligent power system rescheduling cost of generators with the valve-point effectst tha

system. Pathomet al [9] proposed the fuzzy- appears in a rectified sinusoidal function introgluc

optimization approach for solving the (DED) under ripples in the heat-rate curves, t_hats a fun_ctmt‘ne )
an uncertain deregulated power system. Amjady anddenerator real power output, which are defined, as:
Nasiri- Red [10] presented a RCGA with arithmetic-
average-bound crossover (AABX) and hybrid
mutation (HM) to solve the nonconvex ED problem.
Through few recent years, ACO algorithms are
employed to solve optimization problems in diffdaren \where,
fields with more accurate and efficiently solution =
compared with conventional and other modern '
optimization algorithms.

where, f(x) is the objective function such as

NG NG
MinF, => (PG )=> a +b PG +c PG>
i=1 i=1

+ ‘q ><sin(fi x (PG{“‘” - PG, )} Q)

: is the non-linear objective function of power
generation cost.

a, b andc are the coefficients of power generation
cost function.

e andf; are the fuel cost coefficients of thh unit
with valve-points effects.

In this paper, an approach is proposed tcesthig
nonsmooth ED problem using the ACO algorithm,
which based on the behavior of real ants for ) )
searching the shortest route between the colony andVG: is the number of generation buses.
the souce of food based on the indirect The objective function (3) is subjected te th
communication media, called pheromone. The following constraints:
minimization of the total fuel generation costs is a) Equality constraints
considered as an objective function with equalitg a . Power balance constraint
inequality constraints. This paper is organized as;

Section Il formulates the considered ED problent tha ~ The generators real power output should belequa
shows the objective function and constraints. Sacti o the total load demand and transmission lineeloss
Il is divided into two parts. Part 1 shows the as:

description of real ants for searching the shortest 5 = N (4)
route between nest and food source. Part 2 intexluc ;PG' _;PDi * Fosces
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where, PG is the power generation at bysPD, is
the load demand at load bjysNL is the number of
load buses, anB\,sssis the total power losses in the
system.
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Fig. 1 lllustration of real ant behavior
b) Inequality constraints
e« The generator real power output must be
within the feasible limits as:
quin < Pq < P(;Imax (5)

where, PG™ and PG™" are the maximum and
minimum limits of power generation at bus
respectively.

Power flow constraints
The power flow in each transmission must Iss le
than the maximum limit of power flow in that line:a
|PF|=|D, ;PG| < PR™ (6)

where,PF, is the power flow in lin&k, PR is the
maximum power flow in linek and Dy; is the
sensitivity parameters of the power flows related t
the power generations.

3. ACO ALGORITHM

ACO algorithms were first proposed by Dorigo [11]
and his related future work [12-13].

3.1. Description of real ants

ACO algorithms are based on the behavior of rea
ants that are members of a family of social insects

However, a group of explorer ants leave the colony

for finding the food source in a randomly directon

where they marked their routes by laying a chemical

substance on the ground. Other ants attractivedo t

route that has the largest amount of pheromone tha

decays with time. So that, a shorter route will be

found that has a largest amount of pheromone than 2

longer route. Hence, they are found the shortegero

between the nest and food source by indirect

communication media that callegheromonethat
laid on the ground as a guide for another ants. Fig

shows how the real ants can find the shortest path 7 (t+1) =(1—,0)Tij () +&Ar; (1)

the right side as shown in Fig. 1-b. The pheromone
laid on the left side will be concentrated tharhtig
side of obstacle because ants in the shortest path
takes minimum time in leaving and returning fortnes
where they moves in the same speed. So, they aill b
laid a largest amount of pheromone than other ants
on the other route. While, the other ants attractos

the shortest route. Hence, all ants in the coloitly w
take the shortest route around the obstacle asrshow
in Fig. 1-c.

3. 2. Mathematical Model of ACO Algorithm

A random amount of pheromone is deposited in
each rout after each ant completes its tour, anther
antes attract to the shortest route according ¢ th
probabilistic transition rule that depends on the
amount of pheromone deposited and a heuristic guide
function as equal to the inverse of the distance
between beginning and ending of each route. The
probabilistic transition rule of arkkto go from cityi
to city j can be expressed as in Traveling Salesman
Problem (TSP) [13] as:

[Tij (t)]a [’7ij (t)]ﬁ
Zq [Tiq (t)Ja |_/7iq ()

where, 7j is the pheromone trail deposited between
city i andj by antk; #; is the visibility or sight and
equal to the inverse of the distance or the trimsit
cost between cityandj ( #; = 1/d;). a andp are two
parameters that influence the relative weight of
pheromone trail and heuristic guide function,
respectively. Ifa=0, the closest cities are more likely
to be selected that corresponding to a classiealoyr
algorithm. On the contrary, =0, the probability
will be depend on the pheromone trial only. These
two parameters should be tuned with each other,
Dorigo in [11] found experimentally the good values
Iof o andp are 1 and 5, respectively,is the cities
that will be visited after city. While, N is a tabu
list in memory of ant that recodes the cities are
visited to avoid stagnations. After each tour is
completed, docal pheromone updats determined
by each ant depending on the route of each ant as i
pquation (8). After all ants attractive to the shst
route, aglobal pheromone updates considered to
how the influence of the new addition deposits by
the other ants that attractive to the best towghasvn

in equation (9).

r(t+1) = (1_,0)Tij ) +pr1,

)

Pijk(t): ]ﬁ;j’qDNik

(8)
©)

between nest or colony and food source. In Fig, 1-a )
there are no obstacles between nest and food sourcé'nere.z (t+1) is the pheromone after one tour or

However, the shortest route is the straight limenl
obstacle is located on the route of ants to bedwoe

iteration. p is the pheromone evaporation constant
equals to 0.5 as a good value by Dorigo in [E1k

routes around the obstacle, some of ants choose thie elite path weighting constant. = 1/ d; is the

left side around the obstacle and the other witlosle
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incremental value of pheromone of each ant. While,
Az is the amount of pheromone for elite path as:
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AT, (1) =1/ dyey (10)

where,d ,e:iS the shortest tour distance found as in
TSP.
4. ACO ALGORITHM FOR SCOPD PROBLEM

ACO algorithm is applied to solve the SCOPD
problem as an optimization technique with equality
and inequality constraints where artificial ants/éls

in search space to find the shortest route thaingav

. Mouwafi, "Security Constrained Optimal Power ..."

control variable in a search space with one ant in
each control variable in the length of randomly
distributed values.

Step 3: Transition rule

Each ant decide to visit a next position in the
range of other control variables according to the
probability transition rule in equation (7) that
depends on the amount of pheromone deposited and
the visibility that is the inverse of objective fiiion

the strongest pheromone trail and a minimum cost(11). Where, the effect of pheromone and visibility

function. Our objective in this paper is to minimiz
the total cost of generation real output power as
described in (3) with equality constraint (4) and
inequality constraints in (5) and (6). So, heutisti
guide function is the inverse of the individual tos
each ant that positioned in the reasonable limthef
control variable to the visibility of each ant. i
heuristic guide function of the problem is the irsee

of the total costs at iteratignl as:

NG
N+ =1 1(PG) (1)
i=1
In GA, a chromosome is subdivided into genes,
each gene represents a variable, consists of aybina
string with length that depends on the boundary of
the corresponding variable. While, in particle swar
optimization (PSO), a swarm consists of particles o
populations that corresponding to the control

variables. In ACO algorithm, a search space creates

with dimensions of stages on number of control
variables and states or the randomly distributed
values of control variables with in a reasonable
threshold. Artificial ants leaves colony to search
randomly in the search space based on the protyabili
in (7) to complete a tour matrix that consists lof t

positions of ants with the same dimension of the

on each other depends on the two parametarsif.
Step 4: Local pheromone updating

Local updating pheromone is different from ant
to other because each ant takes a different rotie.
initial pheromone of each ant is locally updatednas
equation (8).

Step 5: Fitness function

After all ants attractive to the shortest path that
having a strongest pheromone, the best solution of
the objective function is obtained
Step 6: Global pheromone updating

Amount of pheromone on the best tour becomes
the strongest due to attractive of ants for thithpa
Moreover, the pheromone on the other paths is
evaporated in time.

Step 7: Program termination

The program will be terminated when the
maximum iteration is reached or the best solut®n i
obtained without the ants stagnations.

5. APPLICATIONS

5. 1. Test Systems

Three standard test systems and a real power
system are used to study the proposed technique for

search space. Then, tour matrix is applied on theSCOPD using an ACO algorithm. The first test

objective function to find a heuristic guide furcti

to find the best solution and update local and gllob
pheromone to begin a next iteration. System
parameters are adjusted by trail and error to fived
best values of theses parameters.

The ACO algorithm can be applied to solve the
SCOPD problem using the following steps:

Step 1: Initialization

Insert the lower and upper boundaries otheac
control variable (PG™, PG™, system parameters

system contains 5 buses and 7 transmission lines
[14]. The second system is IEEE 14-bus test system
[15], while the third is IEEE 30-bus test systerB][1
The critical lines are number 1 in all test systems
The maximum power flow ratings of these critical
lines are equal to 45, 150 and 65 MW for the three
systems, respectively. However the ratings of the
other lines in the three systems are below their
security limits. The results that obtained are
compared with those obtained in a previous work
using a conventional linear programming (LP), the

and create a search space with a dimensions ofuzzy linear programming (FLP) and the genetic

number of control variables (PG) and the length of
randomly distributed values with the same dimension
of the initial pheromone that contains elementdwit
very small equal values to give all ants with thene
chance of searching.

Step 2: Provide first position

Each ant is positioned on the initial etat
randomly with in the reasonable range of each

Engineering Research Journal, Minoufiya
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algorithm (GA) technique [14]. The real power
system is the WDN system (Fig. 2) as a part of the
Unified Egyptian Network (UEN) [16]. The best
values of ACO algorithm parameters are-1, =8,
p=0.5 and=5

Two different operation conditions are considered t
obtain the SCOPD, which are normal and emergency
conditions.
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The emergency conditions that may occur in the control variables in tables 1-4, the computationeti
three test systems are: is 2.1, 2.25, 2.28 and 2.344 corresponding to 14, 5
30 and WDN systems that have 2, 3, 6 and 8 number

a) Sudden increase in load demand. .
of control variables.

b) Unexpected outage of one line.

c) Unexpected outage of units inside the
generation plant.

5. 2. Results and Comments

Table 1 Comparison of various optimization
methods for 5-bus system (load=185 MW)

. . . LP FLP GA ACO
The results are obtained using ACO algorithm that
. ; 90.2 78.9 90.2 90.15
processed using MatLab code version 7.1 that setup G2 248 617 5.8 3517
on a Pentium 4, 3.0 GHz PC, 0.99 GB of ram. ' ' ' '
g PG5 60 44.4 59 59.68

5.2.1 Normal conditions PF1 45 346 44.98 44.94
Tables 1, 2 and 3 show a comparison between the cgost. g/hr 380.7 391.7 374.1 373.8
results obtained using ACO algorithm and the 1ine sec 055 0.66 0.99 295

previous results using conventional LP, the FLP and
GA [14]. In theses tables, the ACO algorithm haes th
minimum generation cost compared with other
techniques.

Table 4 shows a comparison between the sesult LP FLP GA Lo
obtained using ACO algorithm and the results using

Table 2 Comparison of various optimization
methods for 14-bus system (load=260 MW)

conventional LP, the FLP and GA for WDN system 208.1 196.8 208.1 208.01
with valve-point effects are taken into account. In PG2 51.86 63.2 51.9 51.99
this table, the ACO algorithm has the minimum PF1 150 140.4 149.96  149.92

958.1 961.4 767.5 763.4

generation cost compared with other techniques. The Cost. $/hr
computation time using ACO algorithm dependent Time.Sec 0.5 0.72 11
on the system size and related to the number of

2.1

41

38 39

Fig. 2 Single line diagram of the WDN system
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Table 3 Comparison of various optimization

methods for 30-bus system (load=220 MW)
LP FLP GA  ACO
PG1 10 52 49.1 59.73
PG2 80 62.3 65.6 55.89
PG3 39.4 28.9 21 40.81
PG4 10 16 23.7 17.5
PG5 30 25.5 16.5 27.12
PG6 50.6 35.3 44.1 18.95
PF1 -0.251 30.94 28.07 37.75
Cost. $/hr  871.93 879.22 685.13  654.9
Time. Sec 0.6 1.1 1.75 2.28

5. 2.2 Emergency Conditions
* Sudden increasein the load demand

Tables 5 and 6 show the SCOPD using the ACO

algorithm for different loading conditions for tie
bus and 14- bus test systems.

In these tables, the power flows in the caiti
lines are kept within their limits, and the genienat
costs are increased according to the increasirigeof
load demand.

Table 7 shows a comparison between the results
obtained using ACO algorithm and GA for a real

power system for different loading conditions. hist

table,

generation cost compared with GA.
» Unexpected outage of transmission line

the ACO algorithm has the minimum

Table 4 Comparison of various optimization
methods for the west delta network system
(load=890 MW)

LP FLP GA ACO
PG1 10 107.6704 70 62.218
PG2 10 123.2776 84.5 90.853
PG3 10 116.9019 81.2 83.74
PG4 250 104.6504 130.1 131.68
PG5 339.75 140.9867 192.5 170.08
PG6 250 74.3218 220.1 221.91
PG7 10 104.6519 56.2 66.42
PG8 10 117.2894 55.3 63.026
PF34 32.417 12.88 18.192 4.325
PF40 46.248 26.636 46.603 12.522
PF50 4.5307 12.535 9.1532 16.665
PF76 15.734 12.298 14.918 16.745
Cost. $/hr  3149.3 3890.4 2909.8 2903.9
Time. Sec 0.375 0.594 2.937 2.344

Where, the maximum power flow in lines 34, 40,&® 76
are 200, 150, 200 and 200 MW, respectively.

Table 5 SCOPD solution using ACO algorithm

different loading conditions for 5-bus system

(MLV?/?d 150 170 185 200 220 230

PG1 82.74 86.87 90.15 92.36 92.63 93.06
PG2 1451 27.93 35.17 49.76 69.83 79.67
PG3 52.75 55.2 59.68 57.88 57.54 57.27
PF1 4483 44.86 4494 43.92 40.397 38.88

Tables 8 and 9 show the SCOPD computed USINGcost ($/hr) 295.12 340.01373.8 409.62860.24 485.92

the ACO algorithm for
compared with the load flow (LF) using the Newton-

Raphson method for 5-bus and 14-bus test systems.
In these tables, overflows in the critical lines ar

different

removed using the ACO algorithm.

Table 10 shows the SCOPD computed using the pc2
ACO algorithm for different lines outage compared pr1

with the load flow (LF) using the Newton-Raphson cost ($/hr) 615.75
method for real power system. The power flows in al

lines outage

lines are kept within their permissible limits.

Table 6 SCOPD solution using ACO algorithm 1

different loading conditions for 14-bus system

Load (MW) 220 240 260 270 280 285

PG1 203.47 206.3208.01 209.13 210.84 210.74
16.53 33.69 51.99 60.87 69.16 74.26
149.1 149.5249.92 149.94 149.97 149.98

689.0663.4 807.98 850.3 872.53

Table 7 SCOPD solution using ACO algorithm and @Adifferent loading conditions for the west ded{estem

39
71

92

Load(MW) 700 800 890 1000 1100
Algorithm GA ACO GA | AcCO GA | ACO GA | ACO GA | ACO
PG1 70 55.588 70 59.732 70 62.218 75.6 72.165 83.84.598
PG2 69.9 71.789 88.5 82.18p 84.5 90.863 130 106.3 30 1 125.51
PG3 73.3 72.679 70 76.366 81.2 83.74 113.8 94.80114.91 114.71
PG4 100 106.99 100 124.98 130.1 131.68 129.9 137.9860.2 159.5
PG5 101.2 101.6 161.7 146.11 192.5 170,08 186.6 .7I89 197 198
PG6 197.5 201.19 210.6 213.43 220.1 22191 220  6241. 249.8 249.88
PG7 40 39.13 40 51.702 56.2 66.42 69.3 77.459 82.83.146
PG8 48.1 50.967 59.1 45.418 55.3 63.0p6 74.8 79.83282.2 84.583
PF34 9.4366 9.5258 15.2154 13.7417 18.192 15.983P4488 17.8139 18.4086 18.52
PF40 42.0418 42.0556 43.8706 44.787 46.603 47.38089796 52.1593 55.3235 55.30
PF50 2.8701 5.0784 6.2583 5.7262 9.1532 7.148 B.8533.5202 9.5783 9.663
PF76 8.974 10.4068 11.7094 119146 14.918 13.25281096 14.7584 15.9008 16.01
Cost. $/hi 2173 2169.3| 2549.1 25446 2909.8 2903.9 3367.9 53363799.4 3798.9
Time. Se( 3.063 2.219 2.891 2.266 2.937 2.344 2.922 2.343 0313. 3.462
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Table 8 SCOPD solution for digrent line outage fc

5-bus test system (load=185 MW)

Line Outage 1 2 6

Algorithm ~ LF ACO LF ACO LF ACO o
PG1 90.15 59.98 90.15 59.89 90.15 85.61 :
PG2 35.17 69.10 35.17 69.24 35.17 40.12 :
PG3 59.68 55.92 59.68 55.87 59.68 59.27 g‘
PF1 - 77.15* 44.78 49.46* 44.23

PF2 73.557* 44735 - - 3165 26.35

* Denotes an overflow in transmission line
Where, the maximum power flow in line 2 is 45 MW

% outage of PG1

Table 9 SCOPD solution for different line outage 3. a) Variation of generation setting

14-bus test system (load=260 MW)
Line Outage 7 6 10
Algorithm LF ACO LF ACO LF ACO
PG1 208.01 185.63 208.01 203.288.01 204.28 £
PG2 51.99 7437 5199 56.55 5199 55.72 g
PF1 166.49%149.38 151.99%148.46151.45*149.41
PF7 47.016 28.2028.379 94.251
* Denotes an overflow in transmission line

Where, the maximum power flow in line 7 is 100 MW

3. b) Variation of generation cost

Table 10 SCOPD solution for different line outage Fig. 3 The SCOPD using ACO algorithm for
for the west delta network system (load=890 MW) different percentages outage of power generation 1
Line Outage 34 40 50

Technique  LF ACO LF ACO LF ACO

PG1 62.218 64.559 62.218 63.315 62.218 64.973

PG2 90.853 91.079 90.853 90.981 90.853 91.177

PG3 83.74 84.212 83.74 85.081 83.74 85.818

PG4 131.68 1315 131.68 131.8 131.68 1321  §

PG5 170.08 174.28 170.08 175.99 170.08 174.28 g

PG6 221.91 224.71 221.91 223.77 221.91 221.88 g

PG7 66.42 63.92 66.42 65.227 66.42 64.92

PG8 63.026 55.668 63.026 53.764 63.026 54.775

PF34 - - 79492 16.234 82.231 16.408

PF40 40.739 47.209 - -  38.897 47.443 26 crage of ma

PFS0 22833 6.6624 19.692 3.8329 - - 4. a) Variation of generation setting
PF76 5.384 13.015 5.387 13.015 5.384 13.009

Where, the maximum power flow in lines 34, 40, 50 &dar
200, 150, 200 and 200 MW, respectively.

* Unexpected outage of some units inside the

generation plant £
Figures 3 and 4 show the SCOPD using ACO g
algorithm for different percentage outage of E
generation plants 1 and 3 for the 5-bus test system
From these figures, the power generation at bus 2
(PG2) is increased largely according to an incréase
the percentage outage of power generations 1 and 3.
While, the power generations at buses 3 (PG3) and 1

|

|

[ | |

| | |

1 1 1

5 10 15 20 25 30 35 40 45
% outage of PG3

(PG1) are increased smallly according to an inereas 4. b) Variation of generation cost
in the percentage outage of power generations 1 and  Fig. 4 The SCOPD using ACO algorithm for
3, respectively shown in figures 3(a) and 4(a)ves different percentages outage of power generation 3

as the generation costs are increased shown irefigu
3(b) and 4(b).
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Figure 5 shows the SCOPD using ACO algorithm for potential tool to aid the power system operatorthién
different percentage outage of generation plarar5 f on-line environment.

the WDN system. From this figure, the power

generation at other generation buses is increase
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