MANSOURA UNIVERSITY

Faculty of Engineering

Dept. of Production Engineering & M/Cs Des

1st Year Production Engineering

Metal Forming Processes & Equipment [5125]

Final Exam: 09-06-2013 Time Allowed: 3 Hours Max. Mark [90Marks]

Please Answer The Following Questions:-

" Provide clean and Neat Sketches:"

WELDING PART [45Marks]

- Q1-a) Describe the appearance and properties of (i) Neutral flame, (ii) Carburizing flame, and (iii) [5 Marks] Oxidizing flame.
 - -b) What is the difference in FOREHAND and BACKHAND gas welding technique? [5 Marks]
 - -c) What are the advantages of *BRAZING* welding?

[5 Marks] -d) Why the *PICKLING* is very important step for *Brazing* and *Soldering* welding processes?

[5 Marks]

- Q2-a) Explain the process of STUD ARC welding with a neat sketch, and explain how it is different from other arc welding processes? [8 Marks]
 - -b) Explain how a tube can be manufactured from sheet by a suitable welding process? [5 Marks]
 - -c) What are the *BUTT* and *LAP pressure welding processes*?

[5 Marks] -d) Explain precisely the *heat source* in *LASER* welding process? [7 Marks]

-e) Describe the *TRANFER ARC PLASMA* torch principle?

[5 Marks]

CASTING PART [45 Marks]

Q1-a) List the main advantages of the casting process?

[5 Marks] [5 Marks]

-b) State the difference between *semi-centrifuge* and *true centrifuging* casting.

-c) Compare precision investment casting and shell moulding from the stand point of process, product, accuracy and applications. [5 Marks]

-d) What are the major limitations of the *Die* casting?

[5 Marks]

Q2-a) Describe the carbon dioxide moulding process.

[5 Marks]

-b) Explain the use of the *chill* with an example.

[5 Marks]

-c) Design the Gating and Risering systems for the Aluminum alloy medium size part as shown in the Figure, where γ_{AIL} = 2.68 g/cm³, γ_{AIS} = 2.7 g/cm³, μ = 0.28, t_{av} = 9mm. [15 Mark]

All Dimensions in mms.

"Prof. Dr. Eng." M. SAMUEL & Tawfik Elmedani

[Best Wishes]

Table (1) Gatino Ratio

Material	Area of Spure	Arca of Runner	Area of Ingat
Cast Iron	4	3	2
Steel	1.11	1.06	1.0
Aluminum alloy	1.0	3.0	3.0

Table (2) Shrinkage Allowances

Shrinkage %
10120
1.81-2.0
2.2-2.4
1.0-1.25
0.5-1.0
1.25
1.5
1.5
0.5

Table (3) Machining Allowances

Casting Size	Allowances (mm)		
	Upper Surface	Surface	Inner Surface
	Cast	Iron	
Up to 150	5	3	3
150 - 300	6	3	3
300 - 500	6	5	6
500 - 900	8	5 6	
900-1500	4	6	8
	Ingots	Steel	,
Up to 150	6	3	3
150 - 300	6	5	6
300 - 500	8	6	6
500 - 900	10	6	7
900 - 1500	13	7	8
	Non-Ferre	ous Metals	
Up to 75	2	2	2
75 - 200	3	2 3	
200-300	4	2	3
300-500	4	3	3
500-900	5	4	4
900-1500	6	4	4

Table (4) S Factor

Av. Thickness (mm)	Small Casting	Medium Casting	Heavy Casting
2.5-4.0	1.1	1.55	
4.0-8.0	1.25	1.77	
8.0-16	1.5	2.12	
30-50	1.75	2.24	0.5
80-120			0.8
230-300		-	1.7
300-600			2.6

Table (5) Distance between Flask and Mould cavity

Casting	The Distance (mm)			
Weight (Kg)	α	b	c	d
Up to 5	40	30	30	30
5-10	50	40	40	30
10-25	60	50	50	30
25 - 50	70	50	60	40
50 -100	90	60	70	50
100-250	ĨŨŨ	70	100	60
250-500	120	80		70
500-1000	150	90		120
1000-2000	200	100		150

Table (6) Flask Dimensions Length and Up to 500 mm - steps by 50 mm Width of 500-1000 mm- steps by 100 mm Gating System Over 1000 mm- steps by 200 mm Height Of Up to 100 mm - steps by 10 mm, than 120, 150 mm Gating System Over 150 mm - steps by 50 mm

RISERING CURVE

(RELATIVE VOLUME)

X (FREEZING RATIO)