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- ABSTRACT: -

In this study, a comparison was held among the Stokes, I—Iotme and Deﬂectlon-gemd formulae
for gravimetric geoid modelling in Egypt, regarding the resultmg statistical geoid features and
accuracies. For this purpose, relevant 2' x 2' grids of gravity anomalies, gravity disturbances and
vertical deflection components were input, yielding 2' x 2' detailed geoid models. The comparison
showed that the Stokes and Hotine methods yielded practically the same geoid features and
accuracy. The Deflection-geoid technique showed different geoid features and significanily better

* accuracy. The comparison of the three geoid solutions at independent GPS/Leveling control,
showed that the mean and standard deviation of discrepancies, pertaining to the Deflection-geoid
forrula, are less by about 36% and $%, respectively, compared to those relevant to the other two
formulae. Therefore, the vertical deflections are récornmended as homogeneous mput data type in
gravimetric gemd determmatmn
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1. INTRODUCTION

The model approach can be considered =2
compniationally efficient tool for gravimetric geoid
modeling. Such approach is generally characterized
by solving the geodetic boundary value problem

(GBVP) using numerical integral formulae. In this

respect, the most common technique is the Stokes’
integral method, which leans on gridded gravity
anomaly data as input for gravimetric geoid
determination. This is known as the third (or Robin)
GBVP. Such trend has been used, utilizing the simple
assessment of gravity anomalies as a gravitational
data type, which is based on the known orthometric
heights of gravity data points. Andcther trend is the
Neumann second GBVP, which leans on gravity
disturbances as input, This is accomplished via the
Hotine formula. Hotine’s methed for geoid
determination is gaining popularity, since the

development of GPS satellite positioning capability, -

which has facilitated the determination of ellipsoidal
heights that are necessary for the computation of
gravity disturbances [13]. Moreover, an additional
integral model is the Deflection-geoid formula,

which has been recently apphed for gravimetric
geoid determination [7].

Of course, all techmques for grawty field
deterininations are based on the unique mathematical
relationships among the various anomalous features,
The limitation could then be the availability of a
particular data type. Therefore, it could apparently
seem that, at least regarding the integral methods,
unique geoid heights would result from the Stokes,
Hotine and Deflection-geoid formula. | Such
hypothesis could be positively supported by the
unique mathematical foundation “of such integral
techniques. However, another factor could give some
advantage of a particular input data type, such as the
statistical physical nature and the spectral content of
the anomalous data type itself.

For instance, by definition, the vertical deflection
components does not contain a zero-degres term [4],

“while the gravity ancmalies are free from the first-

degree  coefficients. Moreover, the various
gravimetric elements have different physical natures,
regarding the smoothness or roughness of the data
type under comsideration [8]. The more the
anomalous feature contains partial derivatives in its
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- velation to the disturbing potential, the more rough is

it (or the more is the high frequency content inherent
into if). In particular, the anomalous potential and
geoidal heights could be considered as the smoothest
features. Thus, the deflection components, gravity
anomalies and gravity disturbances are relatively
rougher in nature, as they represent the horizontal
and vertical gradxents of the anomalous potential,
respectively. . )

- Therefore, the aim of this study is formulated as
follows. Beside the application of the Hotine and
Deflection-geoid methods to the Egyptian Territory,
it is intended to investigate the effect of the
associated input gravity disturbances and deflection
components on geoid determination accuracy, in
comparison with Stokes formula that routinely
uitlizes gravity anomalies as input.

2. DATA PROCESSING

The straightforward application of mtegral
formulae is based on an appropriate gridding of 2
particular scattered point data type, using an efficient
interpolation technique. The available discrete
gravity disturbance data, vertical deflection
components and gravity anomaly data for Egypt
suffers from the lack of reguiar distribution, enough
coverage and suitable resolution. Therefore, in order
fo overcome this problem, the Least-Squares
Collocation technique was firstly used to predict
respective 2'x2' grids of predicted gravity anomalies,

gravity disturbances, prime-vertical and meridian.

deflection components at the geoid, based on all
available heferogeneous gravitational data in Egypt.
These grids cover the region bounded by (22° N <¢

+ £32°N; 25° E <A < 36° E). The input data included

scattered GPS/Lev. geoidal heights, gravity
anomalies, gravity disturbances and  vertical
deflection components. The collocation solution was
performed about the GRIMS-CIEGIT geopotential
model [3], tailored to Egypt up to degree and order
650, according to the algorithm given by [12].

Moreover, Helmert’s topographic effect was taken,

into consideration in the remove-restors procedure.
The GTOPO30 digital elevation model [11], was
utilized in order to account for the topographic
effects of the various data types [2].

The residual gravity anomaly, gravity disturbance
and deflection components grids are then input for
the relevant integral techniques, in order to yield the
associated residual geoidal height grids. The three
solutions are performed, using a unified integration
cap radius wg = 1° Figure (1) through (4) show
contour maps for the three input residual grids.

Such data preparation sirategy guarantees that,
apart from some inevitable noise, the prepared
different data grids originate from the same observed
local field data, which supplements the target

Lattiade (deg.j

comparison among the resulting three geoidal height
solutions, relative to the WGS-84 reference elhpscud
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Figure (1): Contour map for the residual gravity
anomalies (Interval: 25 mgals)
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Figure (2): Contour map for the residual gravity
disturbances (Interval: 25 mgals)
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Figure (3) Contour map for the residual merldlan

deflections (Interval: § arc-second)
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Figure (4): Contour map for the residual prime-
vertical deflections (Interval; 5 arc-second)

3. COMPUTATIONAL PROCEDURES
Using spherical approximation and according to

Stokes’ formula, the geoidal height is computed at a

certain point p, as follows

N, = (R/4mv) J.,[,S(qu) Ag,do oy

where

R the mean radius of the Earth (R = 6371 km),

Ag, the gravity anomaly (reduced to the geoid) at

the running point g,

S(ypy) the Stokes’ kernel, given by;

S(w) = cosec(w/2) - 6sin{y/2)+1-5cos (w)—-3cos(y)
ln[sin (w/2)+sin’ (y/ 2)] @)

D¢ the area element at the running point g,

vp  the WGS-84 normal gravity, given ag

¥, = (ay,cos 9, +by, sin q)p)/\/_(a cos tpp+b2,sin2qnp)

.3

where a, b, . and vy, are the semi-major and semi-

minor axis, equatorial and polar normal gravity,

respectively, relevant to the WGS-84 reference

ellipsoid, and ,, the spherical distance between P

and g, expressed as; :

cos §, =sing, sin ¢, +cos @, cos ¢, cos (hq - ?Lp) @

Usualiy, the geoidal height is spectrally
decomposed into three components, according to the
relevant wavelengths, via the remove-restore
technique. In particular, the far zone contribution is
computed from the geopotential model (Ngpy). The
near zone component (N°) is provided by the local
data within the limited integration cap centered at the
computational point p. Finally, the detailed features
are accounted for through the application of the
topographic indirect effect, N', on the geoid [5].
Thus,

- N =Ny + N+ N 3
Due to the discontinnous coverage of the
gravitational data; even within the integration cap,

the analytical integral in Eq. (1) is replaced by a
numerical - discrete summation. The discrete
sommation is more efficiently performed over a
rectangular grid around the computation point, In the
current study, the estimated residual geoidal heighis
is computed as follows:

= (R/4ﬁyp)Z'ZAg;S (wpq)cosq)chpAl (6)
P A ‘

where Ap = AX =2, Ag," is the input residual gravity
anomaly value at the running point ¢, and the
summation is performed over a 1° cap around p.

. Hotine formula computes the geoidal height in
terms of gravity disturbances, 8g, as follows [6]

= (R/4my,) [[H (v, fgdo - ™)
where H(y) is the Hotine keinel, given as
H(y)=cos ec(y/2)-In[1+cos ec(w]Z)] (8)

Again, given the residual gravity disturbances, 8g',
over the limited integration cap of radius 1° the
discrete Hotine summation y1e1ds the desired residual
gemd undulation,

= (R/ 4y, ) > Sg;H(\,ul;q )COS(qu(pAl )]

The Deflection-geoid formula solves for the geoid
undulation in terms of the vertical deflection, as

follows [7] _
N, =(R/4n) [[ ©.4C(v,,)}/d v, do (10)
where ®, is the component of vertical deflection, at

g, in the direction qp (havmg azimuth o), whlch is
assessed from

O, =E, 080, +n,Sinc, oy
& & ng being the meridian and prime-vertical
deflection components, respectively, at the running
point g, and
tan &, =(—cosg,.sinAh, )/[2sin g, .cosg,.

sin® (A?\-pq / 2) —sin Acpm] (12)
Cly,pg) is given by
C(_\]J) =—2logsin (y/2)~1.5cos{y) -1 (13)
and the Deflection:geoid kernel is | ‘
dC(w)/dy = ~cot (y/2)+1.5sin (y). (14)
Similarly, given the residual deflection components,
E' & " over a limited 1° integration cap, the discrete

version of the Deflection-geoid integral gives the
target residual geoidal height,

N = (R/4m) Y > (ﬁ;cosaqp + 1], sin dqp)
(L

dC(\ppq)/d\ppq.cos P AQAN | - (15)

Because a unified integration cap of radius 1° is used,
the estimated three geoidal height grids were
confined to the region (23° N <9 <31°N; 26°E <}
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< 35° E). This limited prediction region guarantees
that no edge effects occur at the boundarjes. Such
effects would arise as a result of the incomplete
integration caps at these domains. Having a
resolution of 2' in both the latitude and longitude
directions, such grid comprised 241 parallels of
latitude and 271 meridiaris of longitude.

Regarding the three used techniques, the innermost
zone effect was accounted for, by densifying the
gridded data over an inner cap of size 1' around each
computational point, via spline interpolation [10]. It
is clear from Eqs (2), (8) and (14) that there éxist
inevitable singularities of the three integral formutae
at the computation point. Therefore, the relevant
geoid effect, 8N,, due to the data value at eny
computational point p, was accounted for in Stokes’
technique, as follows [1]

aNsuokes (Ag R/ TP) (A(PA?" cos (Pp / ﬂ:) (16)
Similarly, in I-Iotme s method, this effect is assessed
as [9]
Ny = (38R /72 )V (A9AAcosg,/x) (D)
Regardmg the Deflection-geoid technique, the
corresponding value is given by [7]

Ny _pois =R (& + 1. }{ApARcosp, /4n) (18)

where &, & 1y are the horizontal gradients at p of
the residual meridian and prime-vertical deflection
components in the north and east dn'ectxons
respectively.

Having estimated the remdual geoid height grids, '

the long and short wavelength contributions are then

restored back in order to obtain the final geoid

undulation grids, according to Eq. (5). Therefore, the
low frequency contribution was evaluated at the
relevant grid nodes, using the harmonic expansion of
the high resolution GRIMS5-CIEGIT geopotential
model [4],

650 0
Nogws = (M/17) Y, (3/1)" 3. (C m conm+
n=0 m=0

S Sil1 ‘m?L) Pom (5in9) -9
with - - '
kM  the geoceniric gravitational constant,

‘r  the geocentric radius,

¥ the normal gravity induced by the WGS-84

reference ellipsoid (Eq. 3),

a  the equatorial radius scale factor associated with
the hartonic model,

¢  the geocentric latitude,

A the geodetic longitude,

C mn the fully normalized spherical harmonic C-
coefitcients of degree n and order m, reduced
for the even zonal harmonics of the WGS-84
reference ellipsoid,

Saw the fully normalized spherical harmonic S-
coefficients of degree n and order m,
P, (sin 8) the fully normalized associated Legendre

" fimction of degree n and order m.

On the other hand, the high fequency geoid
component, N* is accounted for via the application of
the relevant geoid indirect effect at the grid nodes. In
particular, the indirect effect of Helmert’s second
condensation reduction at a point p is given By

N} =—nkpH? [7, - (kpR= /61, )- Zmpm

‘cos g, (HS 8 /13 : ‘ (20)
with
p  Mean crustal density ( taken 2670 kg/m®),
H, Elevation of the running point q,

Hy Elevation of the computation point p,
L Spatial distance between p and g.

- The above numerical integration was- carried out for

each grid node, np to a cap size of (.75 using the
30"x30" GTOPO30 model; and from 0.75° to 1.4°,
using a 5'x5' coarser version of the same model.

4 RESULTS o

Tables (1) and (2) show the sfatistics of the
residual and final geoidal height grids, respectively,
resuiting from the Stokes, Hotine and Deflection-
geoid formulae. One would agree that in general, the

- Stokes and Hotine solutions are very close and are
somewhat different from fhose relevant to the .

Deflection-geoid solution. This fact is also
manifested by Figore (5) through (7), which show the
corresponding residual geoid contour maps. This is
also ‘reflected by the relevant final geoidal maps,
which are plotted in Figure (8) through (10},
Table (1): Statistics of the residual geoidal height
grids (unit: meter)
Technique Mean o RMS Min.  Max.
Stokes - -0.012 0294 0294 -0.911 1.349

Hotine -0.013 0285 0.285 -0911 1314
Def-geoid 0003 0220 0220 -1.088 1.155

Table (2): Statistics of the final gcondal height gnds
‘ (unit: meter)

Technigue Mean o RMS Min. Max.

Stokes 14210 2.804 14.484 53817 21531
Hotine 14209 2.805 14484 5809 21544
Def-peoid 14225 2.881 14.514 5206 22109

In order o compare the accuracies of the three
geoid solutions, relevant residval geoid undulation
values were estimated at 35 evenly distributed
diserete  GPS/Levelling check points, . using
respective integration caps at these scattered points.
Then, the low and high frequency contributions,

according to Eq. (19) and (20), respectively, were

restored to the predicted residual geoidal heights at
thaose discrete points.
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Figure (5): Stokes residual geoid contour map -

(Interval: 0.50 m)
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Figure (6): Hotine residual geoid contour map
(Intervai: 0.50 m)
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Figure (7): Def.-geoid residual geoid contour fnap

(Interval: 0.50 m)
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Flgure (8): Stokes final geoid contour map
(Interval: | m)
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Figure (9): Hotine final geoid contour map
(Interval: 1 m)

25-

24

% 27 2% » M 3 32 B M
Longitude (dep.)

Figure (10): Def.-geoid final geoid contour map
(Interval: 1 m) .
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Table (3) shows the statistics of the discrepancies
between the GPS/Lev. geoid and the relevant

gravimetric geoid values, Again, the Stokes and -

Hotine solutions have practically the same accuracy,
and this is also true for the minimum and maximum
differences. Swrprisingly, the Deflection-geoid
solution seems to be significantly more accurate than
the two former solutions. In particular, the mean and
standard deviation of discrepancies, relevant to the
Deflection-geoid formula, are less in magnitude by
about 36% and 8%, respectively, than those relevant
to the other two formulae. Moreover, the magnitudes
of the minimum and maximum discrepancy are less
by about 8% and 14%, respectively, compared to the
other two solutions.
theoretically, the three solutions should have given
the same results.

Table (3): Comparison of the three geoid solutions at

GPS/Lev. check points (unit: meter)

Technique Mean o RMS Min,  Max., .
Stokes -0.293 1239 1256 -2.699 3.176

Hotine -0.291 1.235. 1252 -2.694 3.165
Def-geoid -0.187 1136 1.135 -2.460 2.724
5 CONCLUDING REMARKS

Based on the used local field data, it can be
concluded that the Deflection-geoid method results in
a more accurate geoid model, compared to both the
Stokes and Hotine techniques. In other words, the
vertical deflection data type results in geoid
prediction accuracy, which are considerably better
than those relevaut to gravity anomalies or gravity
disturbances as input data types. The Stokes and

Hotine geoidal features and accuracy are practically-

identical, which indicate that gravity anomalies and

gravity disturbances could be considered as mutually

equivalent data types. On the other hand, the vertical
deflection components behave more efficiently
during their use in geoid modelling. This could be
attributed to the relatively medium roughness of such

_data, being the horizontal gradient of the disturbing
potential, compared to the rougher grawty anomahes
and distarbances.

Therefore, one could expect that the input grids of
deflection components, although having the same
spatial resolution as the imput anomaly and
disturbance grids, may have behaved as if it were of a
 relatively higher resolution, due to its mediumm spatial

variability. In other words, a vertical deflection grid
of lower spatial resolution could have résulted in an
aceuracy, which resembles the Stokes and Hotine’s
results in the cwrrent study. Another advantage of
merely using vertical deflection components in geoid
modelling is that they are by definition free from the
zero-degree term uncertainty, which is inberent into

any other data type. Therefore, using the vertical -
deflections may be récommended as input data type .

for geoid modellmg

It should be noted that _'

- [8] Meissl, P. (1971)
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