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ABSTRACT: 
In this study, a comparison was held among the Stokes, Hotine and Deflection-geoid formulae 

for gravimetric geoid modelling in Egypt, regarding the resulting statistical geoid features and 
accuracies. For this purpose, relevant 2' x 2' grids of gravity anomalies, graviv disturbances and 
vertical deflection components were input, yielding 2' x 2' detailed geoid models. The comparison 
showed that the Stokes and Hofine methods yielded practically the same geoid features and 
accuracy. The Deflection-geoid technique showed different geoid features and significalrtly better 
accuracy. The comparison of the three geoid solutions at independent GPSLeveling control, 
showed that the mean and standard deviation of discrepancies, pertaining to the Deflection-geoid 
formula, are less by about 36% and 8%, respectively, compared to those relevant to the other two 
formulae. Therefore, the vertical deflections are recommended as homogeneous input data lype in 
gravimetric geoid detehination. 
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1. INTRODUCTION 
The model approach can be considered a 

computationally efficient tool for gravimetric geoid 
modeling. Such approach is generally characterized 
by solving the geodetic bounday value problem 
(GBVP) using numerical integral formulae. In this 
respect, the most common technique is the Stokes' 
integral method, which leans on gridded gravity 
anomaly dba as input for gravimetric geoid 
determination. This is known as the third (or Robin) 
GBVF'. Such trend has been used, utilizing the simple 
assessment of gravity anomalies as a gravitational 
data type, which is based on the known orthometric 
heights of gravity data points. Another trend is the 
Neumann second GBVP, which leans on gravity 
disturbances as input. This is accomplished via the 
Hotine formula. Hotine's method for geoid 
determination is gaining popularity, since the 
development of GPS satellite positioning capability, 
which has facilitated the determination of eIlipsoida1 
heights that are necessary for the computation of 
gravity disturbances [13]. Moreover, an additional 
integral model 'is the Deflection-geoid formula, 

which has been recently applied for gravimetric 
geoid determination [7]. 

Of course, all techniques for gravity field 
determinations are based on the unique mathematical 
relationships among the various anonlalous featnres. 
The limitation could then be the availability of a 
particular data type. Therefore, it could apparently 
seem that, at least regarding the integral methods, 
unique geoid heights would result from the Stokes, 
Hotine and Deflection-geoid formula. Such 
hypothesis could be positively supporled by !he 
unique mathematical foundation of such integral 
techniques. However, another factor could give some 
advantage of a particular input data type, such as the 
statistical physical nature and the spectral content of 
the anomalous data type itself. 

For instance, by defiition, the vertical deflection 
components does not contain a zero-degre- term [4], 
while the gravity anomalies are free kom the first- 
degree coefficients. Moreover, the various 
gravimetric elements have different physical natures, 
regarding the smoothness or roughness of the data 
type under consideration [8]. The more the 
anomalous feature contains partial derivatives in its 
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relation to the disturbing potential, the more rough is con~parison among the resulting three geoidal height 
it (or the more is the high frequency content inherent solutions, relative to the WGS-84 reference ellipsoid. 
into it). In particular, the &omalous potential and 
geoidal heights could be considered as the smoothest 
features. Thus, the deflection components, gravity 
anomalies and gravity disturbances are relatively 
rougher in nature, as they represent the horizontal 
and vertical gradients of the anomalous potential, 
respectively. 

Therefore, the aim of this study is formulated as 
follows. Beside the application of the Hotine and 
Deflection-geoid methods to the Egyptian Territory, 
it is intended to investigate the effect of the 
associated input gravity disturbances and deflection 
components on geoid determination accuracy, in 
comparison with Stokes formula that routinely 
utilizes gravity anomalies as input. 

2. DATA PROCESSING Figure (1): Contour map for the residual gravity 

The shaightfonvard application of integral anomalies (Interval: 25 mgals) 

formulae is based on an appropriate gridding of a 
particular scattered point data type, using an efficient 
interpolation technique. The available dwrete 
gravity disturbance data, vertical deflection 
components and gravity anomaly data for Egypt 
suffers fiom the lack of regular distribution, enough 
coverage and suitable resolution. Therefore, in order 
to overcome this problem, the Least-Squares 
Collocation technique was firstly used to predict 
respective 2'x2' grids of predicted gravity anomalies, 
gravity disturbances, prime-vertical and meridian 
deflection components at the geoid, based on all 
available heterogeneous gravitational data in Egypt. 
These grids cover the region bounded by ( 22' N 5 cp 
2 32" N; 25" E c: X 5 36" E). The input data included 
scattered GPSLev, geoidal heights, gravity 
anomalies, gravity disturbances and vertical 
deflection components. The collocation solution was 
performed about the GRIM5-CIEGIT geopotential 
model [3], tailored to Egypt up to degree and order 
650, according to the algorithm given by [12]. 
Moreover, Helmert's topographic effect was take& -, 
into consideratibn in the remove-restore procedure. 
The GTOP030 digital elevation model [Ill ,  was 
utilized in order to account for the topographic 
effects of the various data types 121. 

The residual gravity anomaly, gravity disturbance 
and deflection components grids are then input for 
the relevant integral techniques, in order to yield the 
associated residual geoidal height grids. The three 
solutions are performed, using a unified integration 
cap radius yr, = 14 Figure (1) through (4) show 
contour maps for the thee  input residual grids. 

Such data preparation strategy guarantees that, 
apart from some inevitable noise, the prepared 
different data grids originate from the same observed 

Longltudc (M.) 
Figure (2): Contour map for the residual gravity 

disturbances (Interval: 25 mgals) 

Loagitudc (dtg.) 

Figure (3): Contour map for the residual meridian 
deflections (Interval: 5 arc-second) 

local field datd which supplements the target 

84 Engineering ~ksearch Journal, Minoufiya University, Vol. 32, No. 1, January 2009 



Raaed Mohamed Kamel Hassouna, "The Egyptian Geoid by Three Integral Techniques" 

Longitude (a*) 
Figure (4): Contour map for the residual prime- 

vertical deflections (Interval: 5 arc-second) 

3. COMPUTATIONAL PROCEDURES 
Using spherical approximation and according to 
Stokes' formula, the geoidal height is computed at a 
certain point p, as follows 

NP = (~1%) !Ls(v,,) A g P  (1) 

where 
R the mean radius of the Earth (R = 6371 kin), 
Ag, the gravity anomaly (reduced to the geoid) at 

the running point q, 
S(ryp,) the Stokes' kernel, given by; 
S(y) = ~osec(~/2)-6sin(~/2)+1-5cos(w)-3cos(y) 

ln[sin (y/2) +sin1 ( y / ~ ) ]  (2) 

DS the area element at the running point q, 
ye the WGS-84 normal gravity, given as 
7, =(aye cos2cpp +byp ~ i n ~ ~ ~ ) / J ( a ' c o s ~  cp, +bZsin'cpp) 

(3 ) 
where a, b, y. and ye are the semi-major and semi- 
minor axis, equatorial and polar normal gravity, 
respectively, relevant to the WGS-84 reference 
ellipsoid, and ry,, the spherical distance between p 
and q, expressed as; 

cosy,, = sinv, sin cp, +cos cp, cos cp, cos(h, -h,) (4) 

Usually, the geoidal height is spectrally 
decomposed into three components, according to the - 
relevit wavelengths, vja the remove-restore 
technique. In particular, the far zone contribution is 
computed Eom the geopotential model O\TGPd. The 
near zone component (N') is provided by the local 
data within the limited integration cap centered at the 
computational point p. Finally, the detailed features 

the analytical integral in Eq. (1) is replaced by a 
numerical discrete summation. The discrete 
summation is more efficiently performed over a 
rectangular grid around the computation point. In the 
cnrrent study, the estimated residual geoidal heights 
is computed as follows; 

Ni = ( R / ~ ~ ~ ~ ) ~ ~ A ~ ~ s ( ~ ~ , ) c o s ~ ~ ~ A ~ A ~  (6) 
v 2 

where Acp = Ah = 2', Agd is the input residual gravity 
anomaly value at the running point q, and the 
summation is performed over a I" cap around p. 

Hotine formula computes the geoidal height in 
terms of gravity disturbances, 6g, as follows [6] 

where H(y) is the Hotine kernel, given as 

E I ( ~ )  = cos ec(y~/2)-1n[l + cos ec(y/2)] (8) 

Again, given the residual gravity disturbances, 6g: 
over the limited integration cap of radius lo, the 
discrete Hotine summation yieids the desired residual 
geoid undulation, 

The Deflection-geoid formula solves for the geoid 
undulation in terms of the vertical deflection, as 
follows [7] 

Np = ( W n )  &@.dc(vpq)/d v,,da (10) 

where O, is the component of vertical deflection, at 
q, in the diiectiou qp (having azimuth a,), which is 
assessed Eom 

54 & qq being the meridian and prime-vertical 
deflection components, respectively, at the running 
point q, and 
tan a,, = (-cos q ~ ,  s in M,,)/[Z sin cpq .cos 9,. 

sinZ (~h,,/2)-sin Acp,,] (12) 

C(ryp,) is given by 

C(y)  = -210gsin(y/2)-1.5cos(v)-1 (13) 

and the Deflection-geoid kernel is 

d~ (y)/dyf =-cot ( ~ 1 2 )  + 1.5 sin (y) (14) 
Similarly, given the residual deflection components, 
5' & q' over a limited lo  integration cap, the discrete 
version of the Deflection-geoid integral gives the 
target residual geoidal height, 

- - .  
are kcoumted -for Gough the application of the NL = ( R / 4 n ) ~ ~ ( C : c o s a q ,  + ?: sin a,,) 
topographic indirect effect. N', on the geoid r51. ~p h - - A 

~hus, ~ C ( Y ~ ) / ~ V , ,  cp,AcpAh (15) 
N=N,, +Nr+N '  ( 5 )  Because a unified integration cap of radius 1" is used, 
Due to the discontinuous coverage of the the estimated three geoidal height grids were 
gravitational data, even within the integration cap, confmed to the region (23" N 5 q~ 5 3 1" N; 26' E 5 h 
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5 35" E). This limited prediction region guarantees 
that no edge effects occur at the boundaries. Such 
effects would arise as a result of the incomplete 
integration caps at these domains. Having a 
resolution of 2' in both the latitude and longitude 
directions, such grid comprised 241 parallels of 
latitude and 271 meridians of longitude. 

Regarding the three used techniques, the innennost 
zone effect was accounted for, by densifymg the 
gridded data over an inner cap of size 1' around each 
computational point, via splme interpolation [lo]. It 
is clear from Eqs (2), (8) and (14) that there exist 
inevitable singularities of the three integral formulae 
at the computation point. Therefore, the relevant 
geoid effect, SN,, due to the data value at any 
computational point p, was accounted for in Stokes' 
technique, as follows [I] 

W,,,,, = (&;R/Y,) J ( W l c o s v p / n )  (I6) 
Similarly, in I-Iotine's method, this effect is assessed 
as P I  
6N,,,,,, = (~~;R/Y,)J(AWCO~ vp/x) (17) 
Regarding the Deflection-geoid technique, the 
corresponding value is given by [7] 

-R% (5; +r l : ) (~q~hcosqp/4n)  (18) ~N,,,.,,,, - 

where 5; & 11: are the horizontal gradients at p of 
the residual meridian and prime-vertical deflection 
components in the north and east directions, 
respectively. 

Having estimated the residual geoid height grids, 
the long and short wavelength contributions are then 
restored back in order to obtain the final geoid 
undulation grids, according to Eq. (5). Therefore, the 
low kequency contribution was evaluated at the 
relevant grid nodes, using the harmonic expansion of 
the high resoIution GRLMS-CIEGIT geopotential 
model 141. 

with 
kM the geocentric gravitational constant, 
r the geocentric radius, 
y the normal gravity induced by the WGS-84 

reference ellipsoid (Eq. 3), 
a the equatorial radius scale factor associated with 

the bannonic model, 
0 the geocentric latitude, 
h the geodetic longitude, . - -. 
C ,, the fully normalized spherical harmonic C- 

coeEcients of degree n and order m, reduced 
for the even zonal harmonics of the WGS-84 
reference ellipsoid, 

&, the fully normalized spherical harmonic S- 
coeflicients of degree n and order m, 

Pm(sin 0) the fully nomalized associated Legendre 
function of degree n and order m. 

On the other hand, the high frequency geoid 
component, Nt, is accounted for via the application of 
the relevant geoid indirect effect at the grid nodes. In 
particular, &e indirect effect of Helmert's second 
condensation reduction at a point p is given By 

with 

p Mean crustal density ( taken 2670 kg/m3), 
H, Elevation of the running point q, 
H, Elevation of the computation point p, 
L Spatial distance between p and q. 
The above numerical integration was carried out for 
each grid node, lip to a cap size of 0.75; usk~g the 
30"x3OX GTOP030 model; and from 0.75" to 1.44 
using a 5'xY coarser version of the same model. 

4 RESULTS 
Tables (1) and (2) show the atatlstics of the 

residual and fmal geoidal height grids, respectively, 
resulting from the Stokes, Hotine and Deflection- 
geoid formulae. One would agree that in general, the 
Stokes and Hotine solutions are very close and are 
somewhat different from those relevant to the 
Deflection-geoid solution. This fact is aIso 
manifested by Figure (5) through (7), which show the 
correspondimg residual geoid contwGr maps. This is 
aIso reflected by the relevant fiual geoidal maps, 
which are plotted in Figure (8) through (10). 
Table (1): Statistics of the residual geoidal heighr 

mids (unit: meter) 
- 

~ e c h n i ~ u e  Mean rs RMS Min. M a .  
Stokes -0.012 0.294 0.294 -0.911 1349 
Hotine -0.013 0.285 0.285 -0.911 1.314 

Table (2): Statistics of the fmal geoidal height grids 
(unit: meter) 

Tecl~nique Mean rs RMS Min. Max. 
Stokes 14.210 2.804 14.484 5.817 21.531 
Hotine 14.209 2.805 14.484 5.809 21.544 

In order to compare the accuracies of the three 
geoid solutions, relevant residual geoid undulation 
values were estimated at 35 evenly distributed 
discrete GPSnevelling check points, using 
respective integration caps at these scattered points. 
Then, the low and high frequency contributions, 
according to Eq. (19) and (20), respectively, were 
restored to the predicted residual geoidal heights at 
those discretepoints. 
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Figure (5): Stokes residual geoid contour map 
(Interval: 0.50 m) 

Figure (6): Hotine residual geoid contour map 
(Interval: 0.50 m) 

Figure (7): Def.-geoid residual geoid contour map 
(Interval: 0.50 m) 

Figure (8): Stokes fmal geoid contour map 
(Interval: I m) 

Figure (9): Hotine fmal geoid contour map 
(Interval: 1 m) 

m p r a e  (a*) 
Figure (10): DeE-geoid final geoid contour map 

(Interval: 1 m) 
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Table (3) shows the statistics of the discrepancies 
between the GPSLev. geoid and the relevant 
gravimetric geoid values. Again, the Stokes and 
I3otine solutions have practically the same accuracy, 
and this is also true for the minimum and maximum 
differences. Surprisingly, the Deflection-geoid 
solution seems to be significaatly more accurate than 
the two former solutions. In particular, the mean and 
standard deviation of discrepancies, relevant to the 
Deflection-geoid formula, are less in magnitude by 
about 36% and 8%, respectively, than those ~elevant 
to the other two formulae. Moreover, the magnitudes 
of the minimum and maximum discrepancy are less 
by about 8% and 14%, respectively, compared to the 
other two solutions. It should be noted that 
theoretically, the three solutions should have given 
the same results. 
Table (3): Comparison of the three geoid solutions at 

GPSLev. check voints [unit: meter) 
Technrque Mean a RMS Mm. Max. 
Stakes -0.293 1.239 1.256 -2.699 3.176 
Hotine -0.291 1.235 1.252 -2.694 3.165 
Def.-geoid -0.187 1.136 1.135 -2.469 2.724 

5 CONCLUDING REMARKS 
Based on the used local field data, it can be 

concluded that the Deflection-geoid method results in 
a more accurate: geoid model, compared to both the 
Stokes and Hotine techniques. In other words, the 
vertical deflection data type results in geoid 
prediction accuracy, which are considerably better 
than those relevant to gravity anomalies or gravity 
disturbances as input data types. The Stokes and 
Hotine geoidal features and accuracy are practically 
identical, which indicate that gravity anomalies and 
gravity disturbances could be considered as mutually 
equivalent data types. On the other hand, the vertical 
deflection components behave more eff~ciently 
during their use in geoid modelling. This could be 
attributed to the relatively medium roughness of such 
data, being the horizontal gradient of the disturbing 
potential, compared to the rougher gravity anomalies 
and disturbances. 

Therefore, one could expect that the input grids of 
deflection components, although having the same 
spatial resolution as the input anomaly and 
disturbance grids, may have behaved as if it were of a 
relatively higher resolution, due to its medium spatial 
variability. In other words, a vertical deflection grid 
of lower spatial resolution could have resulted in an 
accuracy, which resembles the Stokes and Hotine's 
results in the current study. Another advantage of 
merely using vertical deflection components in geoid 
modelling is that they are by defmition fiee fiom the 
zero-degree term uncertainty, which is inherent into 
any other data type. Therefore, using the vertical 
deflections may be recommended as input data type 
for geoid modelling. 
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