Mansoura Engineering Journal (MEJ), Vol.20., No.3, Sept. 1995 E-39

Forecasting Geomagaetic Time Series Using
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ABSTRACT-: This paper presents an artificial neural network (ANN) approech to
geomagnenc lime-series forecasting, The ANN is used to leam the relationship among past,
current, and future hourly data records We obtained a very close fit during the training
phase. The average error of 24-hour ahead forecasts mn our test on actual data are shown to
be less than 3%, The results for forecasting data of one month ahead show that the ANN
gives accurate esumates for short-term as well as long-term forecasting.

I. INTRODUCTION

The continuos geomagnenhc records of any observatory are highly vanable, on some
days all the three elements of the geomagnetic field undergo smooth and regular variations
while on other days their changes are more or less imegular [1, 2] The geomagnetc
vananons may be resolved into secular chanpes, solar-diurnal and lunar-diurnal changes
and abrupt changes resulhng from magnetic storms. Recently, the present authors, have
initiated research work that provided some rational basis for charactenizing and identifying
the underlying fearures of the geomagnetic vananons. The project is being camed out at
Mational Research Instirute of Astronomy and Geophysics and Mansoura University, It
aims ot the development of an automated system that records, processes, analyses, and
forecasts the geomagnetic nctivity at Missallate [3]

The present work 15 an extension of the previous research. [t presents a method to
make predicnions sboul geomagnetic fime senes. The bamc methods by which such
forecasting 1s made may be classified into two categones in accordance with techmques
they employ. One approach ireats the data patiern as a ime senies signal and predicts the
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functiom values by using varous nme senes analysis techruques [4-6] The second
approach assumes that there 15 sulficent a prior! informaton that a first-pnneiples
denivation may be made to construct an accurate model of the mechanism which is
generating the observed process. A new approach based on adaphive networks has been
introduced recently [7-9] and used with some success to predict the behavior of chaonc
tme senes- determirusic sequences whose second order stansncs seem to indicate that
they are random.

In the present paper, we present an algonthm for forecasnng the hourly geomagnetic
time senes The algorithm unlizes the adapnve networks: a layered perceptron artificial
neural network (ANN). As is the case with ime series approach, the ANN 1s used to learn
the relatonship among pasi, current and future daily geomagnenc data patterns. It traces
previous daily patterns and predicts (i e. extrapolates) a future pattem. The ANN is able to
pecform nonlinear modeling and adaptation. We adapeed the ANN by exposing it to new
dara

The parncular data used in this work to train and test the predictive power of the
ANN are: an ensemble of hourly records of the three geomagnetic elements H , Z, and D
for the penod of 1984-1993 at Missalate, Helwan, and ensemble of simulated records [10).

The orgamization of the paper is as follows: the second section presents a detailed
descniphon of the pattern structure of the geomagnenc records. The ANN mode! and the
algonthm used to train the ANN is descnbed in Secnon 01 In the fourth sechon, we define
the forecasing problems, show the topologes of the ANN used in our simulations and
analyze the performance in terms of errors (the difference between actual and forecasted
data). A discussion of the results and conclusions are presented in Section V.

[I. THE PATTERN STRUCTURE OF GEOMAGNETIC RECORDS

For the present srudy, peomagnenc daga for the penod of 1984-1993 were obtained
from the Nanonal Research Institute of Asmonomy and Geophysics at Helwan
Measurements were made at the magnenc observatory at Missalate station using the
magnetometer Type La cour . This instrument records the changes in the geomegnetic
field on a sensinve paper of size 30 X 40 cm The magnetometer records the daly
vanatons as three iraces which are the Z, H and D geomagnetic-field components.
The records were then examuned, calibrated and then sampled for further data processing
and analysms. The sampling rate used for this study is | sample/howr. Fig 1 illustrates a
typical example of the hourly geomagnenc records for a period of one month.

A recent study reported by the present authors [3] has asserted that the hourdy
geomagnetic records are nonrandom signals and they exhibit three consistent types of
systemanc pattemed componenis; @ slow-rate flucruanon component which reflecis the
iong-term vananions in the geomagnetic field (mean penod 5 days), a recurrent short-
duration transient increases of 24-hour period (diunal fluctuanon component) which are
relatively large and constitute a mm&mmmum
H;I:luﬂtc sun, and a rapid flucruation component which shows transient increases of
13 hour period.

The investigation of the transient increases phenomenon in the rapid fluctuation
component has shown that the transients are panerns generated by some explicit
underlying mechanism that erganizes the data into this specific form. Fig.2 illustrates the
three isolated patterned componeats for the Z-element
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Fig | A typical monthly geomagnetic record (November 1986)
() H clement, (b) Z clement, and (c) D element

(a)
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Fig2 A typical example of the isolated patterned components of the
Z-clement (November 1986). (a) Slow rate fluciuanon component,
(b) Diumal fuctuation component, and (c) Rapid fluctuahon component
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Fig. 3 Hourly pamem of one day: (a) Quiet day, (b) Disnurbed day

In addifion w0 the three idennfied components, geomagnenc data are known to
exhibit daly vananons. The records normally show two rypes of diumnal vananons (1] the
quet days and the disnwbed days A quet day vanation is smooth, regulas, and low in
amplitude, whereas a disturbed day vananon is less regular and 15 associated with magnenc
storms. Fig3 shows examples of quiet and disturbed days Therefore, the problem of
forecasting geomagmetic me-scrics mast fake into consideration the pattern structure of
these records and one can iry to find a single function that gives a future pattem of the nme
senies as its output when some set of past patterns is supplied as its input This model 15
unplemented by artificial neural nerworks (ANNs) as wall be explained below.

II. NEURAL NETWORKS
IL1 Architecture

An ANN can be defined as a hughly connected array of elementary processors called
mewrons. A wadely used model cafled the muln-lavered perceptron (MLP) ANN ig shown
im Figare 4. The MLP wpe ANN consisis of one input layer, one ore more ludden layers
and one output layer Each loyer employs several neurons and each neuron in o layer is
connected o the neurcas in the adjacent layer with different weights. Signals flow into the
nput layer, pass through the hidden layers, and amive &t the output layer With the
excephon of the input layer, each neuron receives signals from the neurons of the previous
layer linearly weighted by interconnect values between neurons, The neuron then produces
its output uignal by passing the summed signal through 2 sigmoid Function [11, 12].

A total of Q seis of sawmng dama are assumed to be avalable. Inputs of

{ﬁ,i,,-.ig} are imposed on the top layer. The ANN 15 trained lo respond to the
comesponding target outpuis, {f,,f,,....[g}, onthe bottom layer. The training continues

uniil a cenmn stop-critenon 18 sansfied. , aining 15 halted when the average ermor
berween the desired and the acrual outputs of the neural network over the Q data sets is
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less than a predetermined threshold. T : training nmé required is dictated by vanous
elements including the complexity of Lie problem, the number of data, the structure of
network, and the triuning parameters used.

INPUT

Fig 4 Structure of a three-layered perceptron type ANN

I11. 2 Procedure for Training the Network

We use the error back propagation algorithm of Rumelhart et al [13] to train the
network, using meun squared error (MSE), over the trmmng samples as the objective
function.. According to the difference between the produced and desired outpuis, the
network's weights {W,] are adjusted to reduce the output error. The error at the output
layer propagates backward to the ludden layer, unal it reaches the input layer.

The output from neuron i, O , is connected to the input of neuron j through the
interconnection weight ¥, . Unless neuron k is one of the input neuron, the state of the

neuron k is |

0y = f( };Wmoi) (1)

where f(x) =1/(1+ "), and the sum is over all neurons in the adjacent layer. Let the target
state of the output ncuron can be defined as ;

] .
E=1(,-0,) @
where neuron & 1s the output neuron.

The gradient descent algorithm adapts the weights according to the gradient error, i e. ,
ok g &0,

AW, a - - e (3)
K ﬁﬂ; mj aﬂ} )
Specifically, we define the error signal as -
ZE
T @

‘With some manipulanon, we can get the following equation .
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AW, =6, O, (5)
where & is an adaptation gain. §, is computed based on whether or not newron J is in the
output lzyer. If neuron j is one of the output newons,

§;=(t-0))0 (1-0) (6)
Il neuron j is not in the output layer,
5,=0,0-0) T 6, U

In order to umprove the convergence charactenshcs, we can introduce A momentum
term with again « to Equanon §

AW, (n+1)= 28,0, + a AW, (n) (8)

where n represents the iteration index.
~ Once the neural network is irained it produces very fast output for given input data.
It only requires a few multiplicanons, additons, and calculanons for sgmoid funcoon (8]

IV. RESULTS

The software used for the ANN here 18 the BrunMaker which is developed by
Californin Scientific Software [14] A set of actunl geomagnetic records is used to train
the ANN. Inaddition, to this training set, an independent set must be availabie to evaluate
the ANN performance. The holdout technique is adopted. The available data records are
splitted into two mutually exclusive sets: the rraining data set and the test set. The data
from the first set are used to train the network. The network that results from the training
process 15 then checked against the data from the test data set to determine whether the
network is a good representation of the time senes and can therefore be expected 10 make
reasonable predictions. This step was accomplished in two ways: (1) to test for shor-term
prediction accuracy and, (2) to test the nerwork prediction ability for long-term predictions.

The neural network structures used in this paper, including the size of the hidden
layer, were chosen from among several structures. The chosen structure is the one that
gave the best network performance 1n terms of accuracy. In most cases, we found that
adding one or two hidden neurons did not sigmficantly affect the neural network accuracy.

Table | shows five sets used to test the neural network. Each set contains 6 normal
days These test data were not used in the training process of the neural network.

Table | Test Data Sets

-
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To evaluaie &mlﬁngﬁﬂﬂ'xpuﬁmﬂufdloﬁupuwm
measure is used throughout this paper -

m=|nmlalvn1uc - forecasted value] i)
actual value

00 %

IV.1 Short-Term Forecasting

To test for shorn-term predichion accuracy, the network is given actual values from
the test data set asits input and the resulting outpul is compared with the next ime series
data pont This was done for every pointin the test data set, and the error stafistic was
caleulated. Thus error estimates the accuracy of short-term predictions by the network. The
ANN was truined to recognize the following cases:

The peak value at day d is defined as the maximum hour value of the day i.e.
max { H(l.d), .., V(24d)} (10)
The topology of the ANN for the peak value forecasting is as follows;
mm : ;ﬁmgmilmhvﬁﬂvﬁzl and V(k-1)

Output newron :  V(k)

where
k = day of predicted value,
V(k) = peak value at day k

Table 2 shows the percent eror of each day in the test sets. The average emor for
all 5 setsis 1.68 %.

Table 2 Error (%) of Peak Value Forecasting

days sel1 o2 S8l setd se15
day1 1, e 1.46 060 235
day2 0.8z 11 133 1.23 [ <)
day3 1.28 234 1.80 os57 244
day4 205 252 224 204 1.80
aays 245 1.50 a4 289 240
dayf 0.08 1.95 1.35 176 2.70
[ Ava. 167 | 202 147 1.47 186
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Case 2: Mean value of the day

‘ 2
Mean Value at day d = (3 ¥ (h,d))/ 24 (i)
=l
where V(h,d) is the geomagnetic data value at hour & on day d
The topology of the ANN for the mean value forecasting 15 as follows;

Input neurons . V(k-7),V(k-6),V(k-5), V(k-4),V(k-3),V(k-2), and V(k-1)
Hidden newrons . 14 hidden neurons
Output neuron = V(k)

where
k = day of predicted value,
V(&)= mean value at I'.‘lay k
Table 3 shows the error (%) of each day in the test sets. The average error for all
Ssetsis1.51 %,
Table 3 Error (%) of Daily Mean Forecasting
days selt sen2 seld 5814 sel5
dayt 0.8z as58 228 222 070
day2 249 2.57 249 226 1.42
day3d 0.18 224 250 217 i
dayd 132 0.2 1.84 2.44 0.53
days | 205 | 176 | 414 | 198 | 237
dayé 2.58 0.895 2.66 0.44 0.62
Avg. 1.57 am 265 1.92 1.42
Case 3; Hourly pattern of one-day

The ANN was (rained to forecast hourly patterns for future days. The topology of
the ANN for one day ahead forecasting is as follows;

Imput newrons :  V{i), 1=1,2,...,24
Hidden newrons : 24 hidden neurons
Output neuron - V(k), k=1,2,..,24

where ¢ = hour of input data,
V() = input partern at hour §,
k = hour of predicted value,
V(k) = predicted pattern at hour k

Table 4 shows the error (%) of each day in the test sets. The average error for all setis
found 1o be 2.02 %. Note that each day’s result is averaged over a 24 hour period,
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Tublc 4 Emor (%) 0 ourly Load Forecasting

days et setd [TE] seld se15
dayl | 135 | 1.3 IKH 137 1Al
doy2 | 211 | an 212 | 204 | 154
dayd | 246 | 244 | 280 | 2% | 2%
dayd | 188 | 188 | 1602 | 100 | 150
dsys | 198 | 190 | 180 | 190 193
davd 253 260 268 288 2189
[CAve_| zon | a6 [ 308 | 202 | 202

Fig 5 shows rwo cxamples of the hourly actual and forecasted patterns (short-term
forecasnng) for ane day ahead.
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Fig 5 Hourly panemns of real and forecasted days

IV.2 Long-Term Forecasting

The ability of the network to make longer-term predictions was also tested. To do thus,
the nerwork 15 given input hourly panern of one-day (rom the test data set. The output of
the network, which 15 the predicted future hourly patiern, is then used as the next input data
set. The ourput from the second prediction is likewise used as the thurd input data set
Continuing the process in this way, the network recursively propagates the ime senes
forward in time 10 make predicnon for 30 days ahead

Fig 6 shows the results of long-term forecasnng for a period of one month ahead:

actual data of one day (24 hour) only are used as an input and the successive 29 days are
predicted  Fig 7 illustrates the results of day 5, day 15 and day 20 for the same month The
percentage error is less than 10% The validity of the predicted data are also confirmed
by comparing the iotal power, amplitude distnbution, and the number of zero crossings of
the real and predicted records. A good agreement of the acrual and predicied values is
obtained.
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Fig 6 Results of long-term forecasting for 3 period of 30 days

7 The forecasting
?mﬂ%nm-«a«n




Mansoura Engineering Journal (MEJ). Vaol.20. No.3, Sept. 1995 E-49

V. CONCLUSION

We have presented o neural network approach to forecashng geomagnedc ime
senes. In our work real and simulated data have been used to train and test the predictive
power of the artificial neural nerworks Remarkable success has been achieved in mraining
the nerworks to leamn the data paniens and thereby 10 make accurate data predictions; we
obtain a wvery close fit dunng the training phase. The average error does not exceed 3% in
our test on acrual data. Our results show that the neural network approach mives good
estimates for short-term and long-term forecasting,
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