Antennas M Sc Exam Time allowed: 3 Hours

Answer the following questions; assuming any missing data.

- A linearly polarized wave traveling in the negative z-direction is incident upon an elliptically polarized antenna (either CW or CCW). Te axial ratio of the antenna polarization ellipse is 2:1 and its major axis coincides with the principal x-axis. Find the polarization loss factor (PLF) assuming the incident wave is linearly polarized in the:
 - a) x-direction.
 - b) y- direction.
- 2) A magnetic field strength of 5μ A/ m is required at a point on $\theta = \pi/2$, 2km from an antenna in air. Neglecting Ohmic loss, how much power must the antenna transmit if it is:
 - a- A hertzian dipole of length $\lambda/25$
 - b- $\lambda/2$ dipole
 - c- $\lambda/4$ monopole
 - d- A 10-turn antenna of radius $r = \lambda/20$.
- 3) A very small ($a << \lambda$) circular loop of constant current is placed a distance h above an infinite electric ground plane. Assuming z is perpendicular to the ground plane, find the total far-zone field radiated by the loop when its plane parallel to:
 - a) x-z plane
 - b) y-z plane
- 4) Design a 3-element uniform linear scanning array with a spacing of λ /4 between the elements.
 - a) What is the progressive phase excitation between the elements so that the maximum of the array factor is 30° from the line where the elements are placed?
 - b) What is the half-power beamwidth (in degree) of the array factor of part a?
 - c) What is the value (in dB) of the maximum of the first lobe?
- 5) Design a resonant cylindrical stub monopole of length *l*, diameter d, and *l*/d of 50. Find the length (in λ), diameter (in λ), and the input impedance at the first four resonances.