Answer the following questions; assuming any missing data.

1) A linearly polarized wave traveling in the negative z-direction is incident upon an elliptically polarized antenna (either CW or CCW). Te axial ratio of the antenna polarization ellipse is $2: 1$ and its major axis coincides with the principal x-axis. Find the polarization loss factor (PLF) assuming the incident wave is linearly polarized in the:
a) x-direction.
b) y - direction.
2) A magnetic field strength of $5 \mu \mathrm{~A} / \mathrm{m}$ is required at a point on $\theta=\pi / 2,2 \mathrm{~km}$ from an antenna in air. Neglecting Ohmic loss, how much power must the antenna transmit if it is:
a- A hertzian dipole of length $\lambda / 25$
b- $\lambda / 2$ dipole
c- $\lambda / 4$ monopole
d- A 10 -turn antenna of radius $\mathrm{r}=\lambda / 20$.
3) A very small $(a \ll \lambda)$ circular loop of constant current is placed a distance h above an infinite electric ground plane. Assuming z is perpendicular to the ground plane, find the total far-zone field radiated by the loop when its plane parallel to:
a) x-z plane
b) y-z plane
4) Design a 3-element uniform linear scanning array with a spacing of $\lambda / 4$ between the elements.
a) What is the progressive phase excitation between the elements so that the maximum of the array factor is 30° from the line where the elements are placed?
b) What is the half-power beamwidth (in degree) of the array factor of part a?
c) What is the value (in dB) of the maximum of the first lobe?
5) Design a resonant cylindrical stub monopole of length l, diameter d , and l / d of 50. Find the length (in λ), diameter (in λ), and the input impedance at the first four resonances.
