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1. INTRODUCTION 

Flat-slab and flat-plate floors are characterized by the 
absence of the beams along the interior column lines. So, the 
reinforced concrete slabs are supported directly on columns. 
Flat-slab floors provide an adequate shear strength and better 
resistance of the negative moments over the columns by having 
drop panels or column capitals. Flat-plate system is used when 
the spans are small and the loads are not so heavy. For larger 
spans and heavier loads the flat-slab can be used. 

Flat-slabs with cantilevers are very popular because 
they increase the allowable used space by distinct areas which 
are very essential for many cases. 

The behaviour of the reinforced concrete flat-slabs with 
drop panels and cantilevers are analyzed by using the non- ' , 
linear finite element analysis. This was illustrated by solv- 
ing a numerical example for a flat-slab with different lengths ' 

of cantilever at different loading. stages. 

2.NONLINEAR ANALYSIS OF REINFORCED CONCRETE 

The nonlinear behaviour of reinforced concrete struc- 
tures are mainly attributed to the nonlinear stress-strain 
relationship, cracking and crushing of concrete. The material 
properties of concretc and steel depend on the stress or 
strain state of the material. In this study the following 
material properties are adapted. 



2.1. CONCRETE 

The analytical model used in the prypnt analysis was 
originally developed by Darwin and Pccknold . This model has 
obtained a g o d  match with the test results of kupfer and 
Nilson. In Darwin's model concrete is assumed to be an ortho 
tropic material in the two principal stress directions. The 
concrete is treated as an incrementally elastic material. At 
the end of each increment, material stiffness and stress are 
corrected to reflect the latest changes in deflection and 
strain. The curves selected for compressive loading arc 
based on an equation suggested by Darwin and shown in Fig. 1 

where a, = the compressive stress. 
E = the tangent modulus of elasticity at zero ,stress. 
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direction. 

The tan tnt moduli in the principal directions for con- 
crete in biaxiaf compression, can be obtained by differentiat- 
ing Eq.(l) with respect to the equivalent uniaxial strain. 

The values of the maximum stresses in the two principal 
directions, ~ ~ 2 n d  uz2 are determined from . . the . modified 
biaxial strength envelo of Kupfer and Gerstle' '. They have ' 
suggested an analytica P" maximum strength envelope .which is 
shown in Fig. 2. This criterion has been adapted in the 

. present analysis. 

2.2. STEEL 

In reinforced concrete slabs, unlike beams, reinforce- 
ment is usually more uniformly distributed, and reinforcing 
bars tend to be smaller in size. In this study, the reinforce- 
ment is assumed to be uniformly distributed over the element. 
Thus each layer of reinforcement can be replaced by an e uiva- 
lent distributed steel layer. The equivalent thickness 01 the 
layer is determined such that the corresponding area of the 
reinforcement in the element remains unchanged. 



where A = the area of one reinforcing bar. 
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b = the spacing of the reinforcing bars. 
p =the reinforcement concrete ratio. 
d = the effective depth of the slab. 

Fig. 3 shows the stress-strain relation for steel which 
has been considered in the analysis. 

3. LAYERED DISCRITIZATION 

In order to account for the varied material properties 
within a finite element, the element is divided into maginary 
concrete layers and steel layers (Fig. 4). According to the 
Kirchhoff's hypotheses the transverse normal stress is neg- 
lected. Thus any point in the element may be considered to be 
in a state of plane stress. The layered element approach, 
ima 'nes every element to consist of a number of concrete and 
steer layers in plane state of stress so that the material 
property matrix can be written for any stress or cracked 
state. The entire element stiffness is obtained by summing up 
the stiffness of the layers. 

3.1. EVALUATION OF THE ELEMENT STIFFNESS 

The inte ation involving material properties can be 
integrated layer f y layer. Let c and s denote the number of 
concrete layers and steel layers respectively for a typical 
layer finite element shown in Fig. 4. 

Assuming the material properties are constant within. 
each layer, the mtegration can be carried out as follows; 

C D - 1 3 - C , (z,,, + Z: ) [Dc] I+ 2 z 2 j ~ ~ ]  tI . I. . . . (3) 
1 =I 1 =1 

where . [Dc], is the material matrix of the i th concrete 

layer. 
[Ds] is the material matrix of the i th steel layer. 



3.2.EVALUATION OF LAYER STRAINS AND STRESSES 

Once the nodal displacements are known, the membrane 
strain on the 'reference plane {so )  and the curvature {K)  can 
be obtained. The strains at the centers of layers can be 
computed. 

The layer stresses are computed as follows. 

{ Q,) r P I  5 E lc , (6) 

{ 0s) 7 P I  5 &  Is 1 (7) 

where { ec)l  and { a] denote the strains and stresses at 
the center of the ith concrete layer, { & a  and {u 1 penote 
those at the center of the ith steel layer. 

4. CONCRETE CRACKING 

Crackin in reinforced concrete is complicated by the' pre- 
sence of t % e steel reinforcement. When the concrete reaches 
the ultimate tensile strength, primary cracks form at finite 
intervals along the len th. The total load is transferred ac- 
ross these cracks by t% e reinforcement, but the concrete be- 
tween cracks is still capable of carrying stresses because of 
the bond between steel and concrete. This phenomenon is called 
the "tension stiffening effect". 

Frank Vecchio [ ' prepared a stress-strain relation for 
concrete in principal tensile direction, as shown in Fig. 5 
which gives good results with the experimental works. The 
modulus of concrete Eo decreases gradually as the strain in- 
creases after cracking as follows; 

where f is the tensile cracking and E ,  is the strain at any - 
stress level. This model is considered in the present study. 
So, For any layer, when any of the principal stresses exceeds 
the tensile strength, cracks will occur in a direction perpen- 
dicular to that principal stress. The modulus of concrete is 



reduced according Eq.(8). 

5. THE FINITE ELEMENT PROGRAM 

The computer program has been developed to implement the 
previous method of analysis. A layered quadrilateral isopara- 
metric plate bending element is chosen in the program. An inc- 
remental procedure along with secant stiffness method is used. 

The finite element pro am has been extended also to tak f ing into account the varia le thickness of the slabs to consi- 
der the effect of the drop panels and the placement of the 
steel reinforcement. 

6.APPLICATION EXAMPLE 

. .To study the effect of the cantilevers on the behaviour 
of flat-slab system with drop panels during different stages 
of loading, a numerical example for a roof of 18.0 x 18.0 m is 
presented. The design data are as follows; 

- Spacings between columns = 6.00 m. - Column dimensions = 0.40 x2 0.40 m. - Partition weight = 100 kg/m ., - Service live loads = 250 kglm . 
- Compressive strength of concrete CZ8= 300 kglcm2. 
1 Tensile strength of concrete P+= 30 kg/cm2. 

- Yield strength of reinforcement f .. = 4200 kglcm2. 
I - Thickness of the slab ts= 0.16 m. 

- Thickness of the drop panels tn = 0.08 m. 
The drop panels considered in this example extent from 

the center lines of the columns to 0.25 the span length in 
each direction. 

The following cases for the reinforced concrete flat- 
slab with cantilever are studied; 

Case 1 : Lca = 0.0 (Without drop panel). 
Case 2 : LC, = 1.5 m. ( Lca 1 L = 0.25 ). 
Case 3 : Lca = 2.1 m. ( Lca 1 L = 0.35 ). 
Case 4 : LC, = 2.4 m. ( Lca / L = 0.40 ). 
Case 5 : Lca = 2.7 m. ( LCa / L = 0.45 ). 

. Case 6 : Lca = 3.0 m. ( Lca / L = 0.50 ). 

where L : panel length in the considered direction. 
length of the cantilever neighboringto L . 



7. BEHAVIOUR OF FLAT-SLAB THROUGH LOADING 

To show the changes in the behaviour of flat-slab with 
cantilevers during the history of loading, the following 
stages are considered; 

Loading stage 1 : W, = D + L( working loads ) 
Loading stage 2 : W2 = 1.5 Wl(ultimate loads ) 
Loading stage 3 : W, = 2.0 W 

1 

where W = Distributed load per unit area = W1, or W2 or W3 
according to the loading stage. 

D = dead loads 
L = live loads 

The previous example is solved by the nonlinear F.E. pro- 
gram to analyze the behaviour of the slabs for each case such 
as the deflections at various locations and the distribution 
of moments at different stages of loading. 

8. ANALYSIS OF THE RESULTS 

Figures 6 to 17 illustrate the contour lines of the 
deflections for the flat-slab with different lengths of canti- 
levers for loading stage 1 and 2. Also, Figure 18 shows the 
values of the maximum deflections of the slabs. It is noticed 
that the general behaviour of the deflections is improved and 
decreased at any point within the flat-slab for LcaS 0.4 L. 

The maximum deflection is decreased by about 33%. for Lca = 

0.4 L than that without cantilever. The deflection for Lca2 
0.45 L increased< due to the heavy cracks at the top of the 
exterior column lines. 

The distributions of the bending moments in the 
cantilever at the long directions of the slab for Lca= 0.4 L 
are similar to the neighboring half column and field strips. 
Figure 20 (a,b) shows the distribution of the moments along 
axes (X2- X2), (X3-X3) and (X5-X5), (figure 19) and Figure 21 
(a,b) shows the distribution of the moments along axes (Xl-XI) 
and (X4-X4). 

The cantilever slabs reduces the punching shear 
stresses. This is due to the reduction of the unbalanced mome- 
nts transfer to the ed e and corner columns. and the increase 

stresses. 
i of the perimeters of t e slabs which resist the punching shear 



9. CONCLUSIONS 

From the analysis of flat-slab with cantilevers by the 
finite element method at the different loading stages it can 
be concluded that; - Whenever the length of the cantilever slabs increases the 
general behaviour of the flat-slab improves. It is recommended 
to limit the length of the cantilever to be equal 0.4 the adj- 
acent span in the case of flat-slab with drop panel t,= 0.5 tc 
It is advised to make the cantilever slabs whenever p s s i b 6  
to reduce the deflections and the punching shear stresses for 
the edge and the corner column. - The distributions of the bendin moments in the cantilever 
at the long directions of the sla% must be considered. It is 
recommended to reinforce this direction similar to the 
neighboring half column and field strips respectively. 
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