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ABSTRACT

The production of energy exists in different shapes and forms, ¢.g. thermal, mechanical, electrical
or other forms of energy. Each of these forms exists in different types and arts. The production and
scheduling of energy types are decision processes which are basically concerned with the adoption
or more precisely the allocation of the natural and industrial resources in order (o best satisfy
markcting and customer rcquircinenis at minimum best economic conditions. There are many
reasons Lhat make energy production planning a challenging problem. The variable structure of both
the demand and costs, the difficulty to preciscly forecast the demand at the very detailed level, the
less flexibility to modify the operating conditions, and that there are usually long and uncertain
delays in obtaining the industrial resources (new machines, workers training, subcontracting
capacities, raw materials« itenh components, etc.)

Researchers and scientists have paid a great parl of attention for developing scheduling and
planning systems to support such decision making processes. Two different approaches for
production planning and scheduling are known. The first, called the monolithic approach,
formulates the problems as a large scale mixed-integer linear programming problemis and is usually
solved approximately using Lagrangean relaxation to the mixed integer linear program. The second
approach, called the hierarchical approach, partitions the planning and scheduling problem into a
hierarchy of smaller subproblems. The upper hierarchy deals with strategic decisions for the
planning horizon, while the lower hierarchy deals with the more detailed short-termed scheduling.
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The computational effort required for the monofithic approach is generally greater (han that
required for the hicrarchical approach. The hierarchical approach may requirc less detailed demand
imput data. Also the uncertainty is better treated by the hicrarchical approach.

In ihis study, a comparison is presented between two different hybrid procedures for solving
the hierarchical cnergy production planning and scheduling problem. A simplification in one of
them is made. It the first procedure, hierarchical subproblems are included in an overall mixed-
integer linear programming formulation. Accordingly, (he problem is partitioned into two
hicrarchics: famitics m the lower hierarchy, which, in turn, are aggregated nto types in the upper
hiersrchy. In this procedure, the set of inventory conslramts are priced out using Lagrangean
multipliers in the main objective Munction, which is then partitioned into two subproblems. The (irst
subproblem is an optimal control problem on the family level (lower hierarchy) while the other
subproblen: s a linear program on the type level (upper hierarchy). The two subproblems are linked
togcther by an inventory aggregation constraint, By his approach, a feedback is included
automatically in the solution procedure, bul it does not pass directly from the lower leve!l to the
upper level since both subproblems are solved in parallel. In the second procedure, instcad of using
Lagrangean relaxation with respect Lo a group of constraints in the ariginal model, the model is first
partitioned, m which cuts are priced out by means of a set of Lagrangean multipliers into the
subproblem gencrated on the family level. Accordingly, one subproblem is trivial and the other
subproblem is an incapacitated lot-sizing optimal control problem. The size of this subproblem 1s
exactly the same as Lhat of the equivalent subproblem in the previous procedure. In hoth procedures,
the optimal control subproblem is solved using dynamic programming and the set of Lagrangean
multiplicrs are updated using subgradient optimization algorithm.

Results show thatl both algorithms are quite acceptable and efficient. A comparison between
the results of both algorithms shows considerable improvement compared to (he resull found in the
uterature. The enhancement of these results may be returned to the fact that step sizes are more
suitably chosen and to the simplification done in the solution procedure.

Heywords: Energy, optimal scheduling, production planning, hybrid decomposition techniques.

minimum (production, setup, inventory, cic)
costs. For a typical energy production and
scheduling plan, the decision makers have (o
determine the total amount of energy to be
produced (force level), scheduling of tbe
overtime, the production run quantities and the

INTRODUCTION

Energy is one of the most important products in
life. Without energy, life would not become so
easy and comfortable. Consumption of energy
is found in different kind and forms. The

production of fossil fuel energy (coal, oil and
gas) is of major interest recent years. Statistics
of 1999 show that 90.3% of the world cnergy
consumption is from fossil fucl resources
(11.1% of it s biomass energy). Electric,
thermal and mechanical energy are typical
products. Nuclcar cnergy represents about
6.9% of the world cnergy consumnption, while
hydroelectric energy represents about 2.3%. On
the other hand, renewable energy forms, which
are important potential for the future, represent
only about 0.5% of the world recent energy
consumption) [1, 2].

Scheduling of cnergy production are
decjsion processes which is concemned with the
adoption and allocation of the natural and
industrial resources in order to best satisty
marketing and customer requirements al

sequencing of their occurrences.

Therefore, energy production planning
and scheduling becomes a challenging problem
for many reasons. The first reason is the
structure of both the demand and costs which
are usually wvariables (for real planning
problems) over time according to seasonal
structures. It is recommended in this scope to
revise the energy demand (and accordingly the
production) plans as soon as new information
about these structures are available. The second
reason is the difficulty to forecast precisely the
energy demand at the very most detailed level.
It is therefore seen to aggregate end or semi-
end products (product items, trained personnel,
supplies or accessories) which have similar
production and marketing propertics into
SJamilies. For example, the family of crude oil
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cnergy imay be considered as the aggregation of
equipments, supplics, spare parts, rcplaceincnts
and accessorics rcquired for ils production.
Similarly, families for the nalural gas energy,
coal cnergy, hydroelectric energy, nuclear
energy, biomass energy and renewable encrgy
may be considered. Analogously, similar
families are aggregated into types to simplify
the planning problem. We can consider the
aggregation ol oil, natural gas and coal families
inlo one type; the fossil fuel type. Also the
hydro electric, solar, wind, geothermal, tidal,
and biomass energy families can be aggregated
into another type; the renewable energy type. A
third type may contain families of trained
labors, maintenance crews and management
staff. Such an aggregation scheme is known as
the hierarchical scheme [6].

The third reason is that there is less
flexibility to modify the operating conditions of
any energy production system. Such rigidity is
met in the first line with labour management.
Therefore production is to be planned within
the available regular production time as long as
it is possible and producing as less as possiblc
in overtime. The fourth reason is that there are
usually long and uncertain delays in obtaining
the natural and industrial resources (new
equipments, workers training, subcontracting
capacilics, raw materials¢ item components,
etc.) as well as an incompressible procurement
and manufacturing lead time.

It is (herefore clear that lhe energy
production plan can not be implemented
efficiently with a short sight view. In this scope
it is recommended to plan for production ahead
of time and for as long time as possible. That is
because long planning horizons give the
suppliers the chance to plan efficiently and pass
on their clients part of the cost reduced so
obtained. For these purposes, the energy
production planning and scheduling processes
in a patch processing environmenl are
concemed with the aquisition, utilization and
sctting of the available resources.

Engineers, researchers and management
scientists have paid a great part of attention for
developing energy  production  planning
systems to support such decision making
processes. Two different approaches for energy
production planning and scheduling have been
appeared in the literature. The first approach,

called the monolithic approach, formutales the
production planning problems as a large scalc
mixcd-integer lincar programming problems,
see e.g. Dzielinski and Gomory [3], Lasdon
and Tcrjung [4] and Manne [5]. The monolithic
formulation of the planning problem is usually
solved approximately each planning period
witl the instantaneous decision (of that period)
being implemented. A common solution
procedure for the monolithic approach is found
to be equivalent to a Lagrangean relaxation to
solve the dual problem to the mixed-integer
linear program. The solution of the dual
problem is then rounded to oblain a feasible
near optimum solution to the main problem.
The second approach, called the fiierarchical
approach, partitions  the  planning  and
scheduling problem into a hierarchy of smaller
subproblems, see e.g. Hax and Meal [6]. The
upper hierarchy deals with strategic decisions
for the planning horizon, while the lower
hierarchy deals with the more detailed short
term scheduling. At any planning pcriod, the
subproblems are solved sequentially, with
conslraints imposed from the solution of the
upper hierarchy on the lower hierarchy, and
therefore, the approach implcments also
instantaneous solutions. However, there are
theoretically no  mathematical feedback
processes to the upper hierarchy and thercfore,
exact optimality ts not guaranteed.

In a short comparison between the two
approaches, it is known that the monolithic
approach focuses on a well defined model
formulation for which the optimization process
is meaningful. While, in contrast, the main
problem is partitioned in the hierarchical
approach into subproblems, cach of which is
separately solved, rcsulting in a systcm of
suboptimization problems,

The hierarchical approach has four
polential advantages over the monolithic
approach. The first advantage is that in he
monolithic formulation of the energy planning
and scheduling problem, the solution is
obtained (in mosl cases), as mentioned beflore,
through linear programming algorithms applied
to a large size mixed-integer programming
problem. On the other hand, in the hierarchical
approaclh, the solution is in general obtained by
solving a dynamic programming problem only,
see e.g. [7, 8], or additionally by solving
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another small size lincar programming problem
[9]. For this reason, the computational effort
requircd for the monolithic approach is
gencrally greater than that required for the
hierarchical approach. The second advantage is
that the hierarchical approach may require less
detailed demand input data, in that it needs
only aggregatc demand data, over the planning
liorizon and detailed demand data, over a much
shorter scheduling horizon. The monolithic
approach requires usually detailed demand data
over the whole planning horizon, The fhird
advantege is  the extent (o  which the
hierarchical  subproblems correspond  to
organizational and decision-making echelons.
The consequences of this point are the
increased interaction between the planning
system and the decision makers at each level,
and the improved coordination of the
objcctives throughout the organization. The
Jourth advantage is that uncertainty is better
treated by this approach, because the more
detailed scheduling decisions regarding a
certain job are postponed until the instant
beforc the job begins processing; see e.g.
Aardal and Larsson [7], Graves [9] and Ari
[10].

In this work, a comparison is presented
between two different hybrid procedures for
solving the hierarchical energy production
planning and scheduling problem in the
framework of Hax and Meal [6]. Furthermore,
a simplification in one of them is made. The
first procedure, presented by Graves [9], is a

hybrid approach where hierarchical
subprobiems are included in an overall mixed-
integer linear programni formulation.

Accordingly, the problem 1s partitioned into
two hierarchies; in the lower hierarchy, cnergy
items are aggregated into familics, which, in
turn, are aggregated into types in the upper
hicrarchy. In this procedure, the set of
invenlory constraints are priced out using
Lagrangean multipliers in the main objective
function, which is then partitioned into two
subproblems. The first subproblem is an
optimal control problem on the family level
(lower hierarchy} while the other subproblem is
a linear program on the type level (upper
hierarchy). The two subproblems are linked
together by an inventory aggregation
constraint, ie. the inventory on the type

.set  of Lagrangean

(aggregale) level 1s to be equal to the sum of
the inventories on the family (detailed) level.
By this approach, a feedback 1s included
automatically in the solulion procedure, but it
does not pass directly {rom the lower level to
the upper level since both subproblems are
solved 11 parall.

In the second procedure, another hybrid
approach is presenied by Aardal and Larsson
[7]. Instead of using Lagrangean relaxation
with respect to a group of constraints in the
original model, the model is first partitioned
according to Benders decomposition [11]. The
Benders cuts are then priced out by means of a
multipliers into the
subproblem generated on the family level.
Accordingly, one subproblem is trivial and the
other subproblem is an incapacitated lot-sizing
optimal control problem. The size of this
subproblem is exactly the same as that of the
equivalent subproblem in the procedure of
Graves. In both procedures, the optimal control
subpreblem is  solved using dynamic
programming [8] and the set of Lagrangean
multipliers are updated using subgradient
optimization algorithni.

MODEL FORMULATION

The main objective of the energy production
planning and scheduling process is twofold.
First the planning function of the system is to
determine what resources are needed and at
what points of time they are required, in order
to satisfy the aggregate demand over a
prespecified planning  horizon. Second, the
scheduling function should determine for the
immediate scheduling period how the available
resources should be allocated to the individual
products in order to provide the best customer
services at a minimum total cost. For thesc
purposes, it is assumed that the demand is
known over some horizon. Both the plan and
the schedule should be revised periodically in a
rolling-schedule fashion as soon as improved
demand forecasts are obtained.

In this work, it is assumed that energy
products could be grouped into two levels of
aggregation. As discussed in the introduction,
the enerpy end products to be delivered to the
consumer are grouped into families. Items and
accessories in one family share a common
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sctup cost, and thercfore necd to be considered
jointly when preparing a planning schedule.
Families having the same demand pattern are
aggregated into types (c.g. oil, gas and coal
families build up the fossil fuel energy type).
Families in one type {and consequently their
items) sharc a common unit inventory holding
cost. This aggregation scheme has been first
proposed by Hax and Meal [6], and has Dbeen
observed in many industrial  situations.
Interested rcaders may see [6, 10] for detailed
discussion of this aggregation schemc of
production planning.

In this section, wc shall give a full
discussion of the mathematical model of the
hierarchical approach of production planning.
The problem is to determine a production
schedule on the family level, which in turn,
provides the families inventories. Also, it is
required to determine the production and
inventory planson the type level. These
deeisions should be made in order to minimize
the total cost, i.e. the sum of the overtime cost,
the inventory holding cost and the setup cost
subject to production capacity and demand
requirements constraints. It is also shown that
both family and type decisions are included in
the overall problem formulation, which is
described below,

In the following formulation, subscript ¢
corresponds to time periods, i to types, j to
families and # denotes number of time periods
of the planning horizon. The decision variablcs
for this model are:

O, overtime required in period /,
T (£i) inventory level of type i (family ;) in
period ¢,

Py (Pi) production quantity of type i (family

Jyin peried ¢,

X; zero-one variable to indicate setup of
family j in period ¢,

Input data to the model are:

G production  cost  premium  for
overtime in period ¢,

it inventory holding cost for type i in
period ¢,

St setup cost for family j in period ¢,

dy(dy) demand for type i (family j) in
period ¢,

ry regular production time available in
period ¢,

k; production time for unit of type i,

M. 5
T: sct of familics belonging o type i,
iy maximum  production quantily for
family j in period ¢ ie my; =

Z kzt djﬁc
We consider the following simple model
formulation:

(PPS)
N
minz = Z[C-'O-' +Z)‘I“]”J +ZZSj.'Xj:' (l)
I ] f I

subject lo
Pj1 +[jr _Ij.rH = dJ,HI Vj.l (2)

‘Zkf- IDI-, _Or < Ly Vi (3)

7. 1
JE%:‘) ,o= 11'.' Vit (4)

P .
JE;(U #=k Vit (5)
Po—m, X, <0 vt (6)
O Byilic Py i 2 0 Vit (7)
Xo=1{01} vt (8)

As shown in the aggregation scheme of
the above modcl, production capacity costs (of
the overtime) and inventory holding costs are
accounted for by types, while production selup
costs are accounted for by families. Constraint
(2) is an inventory balance on the family level,
while constraint (3) 1s a production capacity
constraint. Constraints (4} and (5) are
consistenicy constraints between types and
families for inventory and production,
respectively. They link the upper and lower
hierarchies for both quantities. In the work of
Graves [9], constraint (5) is replaced with an
inventory balance on the type level, i.e.

BJ + ]r'r _Ii,r+| = df',r+l Vi,l (9)

which is already fulfilled since
dy =3 jerei)d,, together with constraint (5).

Constraint (6) relates the binary setup variables
X, to the family production 2.

The model (PPS) is a single resource
model for scheduling types and families and
possibly the simplest of all planning models. It
considers only one constraint production
resource, and incorporates only a single option,
the overtime, for varying the resource level.
We ignore the scheduling of items within a
family; this is partially justified by the
aggregation scheme in that the total costs can
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be delermined either at the Lype aggregate or at
(he family aggregale.

Many approaches of aggregation and
solution procedures have been presented in the
literature. We shall discuss two of these
procedures in this paper and compare their
differcnces and results. Readers who are
interested in  more details about such
approaches and procedures may see for
instance Aardal and Larsson [7] as well as
Graves [9].

SOLUTION PROCEDURES

1. Using Lagrangean Muitipliers

The procedure presented by Graves [9]
examines Lagrangean relaxation to solve the
dual problem to (PPS) by an iterative
procedure. For this relaxation, Graves had
priced out theset of inventory consistency
constraints, constraint (4), into (PPS). Instead
of constraint (4), we have priced out the set of
production consistency constraints, constraint
(5), mto (PPS) in order to satisfy some
conditions for the dynamic programming
algorithm [12] used in our work. The dynamic
programming algorithm requires concave cost
functions (for production and inventory).
Furthermore, lower and upper Dbounds are
imposed on the set of Lagrangean multipliers
in order to insurc boundness of the objective
function of the subproblem generated on the
aggregate (types) level, as discussed later.
Having a set of Lagrangean multipliers
A =1{4,}, a relaxation of (PPS) is obtained by

pricing constraint  (5), jointly with thecse
multipliers into the objective function (1) as:

L{1)= nmin [Z +Z/1”( > Py- P,,H (10)

T jeTij)

subject to
L= Z{C.'Of + Zl’nlnj"' ZZS;;X,T
! i Joi ’
and (2), (3), (4), (6),(7), (8).
The dual problem to (PPS) is found to be:

(D) max L{A) (12)

The solution of the dual problem (D) is
obtained by an iterative procedure working in
the hierarchical framework of Hax and Meal
[6]. This could be achieved by partitioning the

(1)

relaxed function (10}—(12), as il is easily
recognised, into two subproblems. The first
subproblem is an aggregation model on the
type level, and could be written as follows,

(LP)
min ZLP=Z|:CrO.' +Z(hu]n' _/T’NPH):| (13)
(2), 3% (7)

The other subproblem of the Lagrangean
refaxation (10)-(12) is found to be:

subject to

(DP) min Z,p = %SﬂXﬂ Al (1
subject to

(4), (6, (7), (8) s

and i=7""()) ()

where i = T"(/') ifandonly if j e 7(i). Clearly,
(DP) is a disaggregation model dealing with
scheduling of product families. Furthermore,
(DP) could be separated by families into a set
of incapacitated lot-sizing problems, each of
which is easily solved by dynamic
programming [8].

In order to insure boundness of the
objective {function of (DP) the Lagrangean
multipliers A should be positive. That is
because negative multipliers, which are
considered as cost coefficients in (DFP), means
to produce as much as possible to mmimize its
objective function, and consequently the value
of the objective function will go to . On the
other side, %, must be less than or equal to
ck; + 2 15l 10 order to keep boundness of

the objective function of (LP). For these

reasons, A; should fulfill the following
inequality.
0 < /{‘-l, < C,Jf,-“"Zh,k V.",[ (E6)
k=i

It is already known in such mixed-
variables problems that a duality gap usually
exists, i.e. the objective function of the dual
problem, i.e. equation (12) above, is usually
less than that of the relaxed problem, i.e.
equation (10) above. That is because the
relaxed problem does not have the integrality
property, i.e. its optimal value will be changed
by dropping the integrality properties on its
variables. In this context, we have used the
following definition of the duality gap g
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__ Bestupper bound — Best lower bound

Best upper bound

The solution procedure for this approach is
organized as follows.

Algorithm Al

Step 0: Set k = @ and initialize Ay = {A,].

Stop 1: Solve the subproblem (DFP) with A = ;.

Step 2: Solve the subproblem (L) with A = ;.

Step 3: 1f some preset stopping criterion is met,
stop, otherwise goto step 4.

Step 4: Update A

Step 5. Set k =k + [ and goto step 1.

Initially, the &;'s could be set to zero. As
mentioned before, the problem (DP) could be
solved for each family using dynamic
programming, while (LP) is solved using the
simplex method. The sum of the objective
functions of both (DP) and (LP) from steps I
and 2, constitutes a lower bound to (PPS). An
upper bound of (PPS) is obtained by
aggregating the production schedule obtained
from step I and then substituting this aggregate
production plan into the objective function (1)
of (PPS). The procedure can be terminated
once both solutions from steps | and 2 become
identically. Also the procedure may be
terminated when a preset value of the duality
gap is reached, i.e. both the lower and upper
bounds become close enough to each other, or
after doing a fixed number of iterations.
Updating X4 in step 4 could be obtained using
subgradient optimization algorithm, which will
be discussed briefly later.

2. Using Benders Decomposition

In this section we present the solution
procedure used to solve (PPS) in the
framework of Aardal and Larsson [7]. They
had partitioned the problem according to
Benders decomposition [11], with some of the
variables are classified as complicating
variables, namely Xj, /i, and P in (PPS) above.
Accordingly, (PPS) is partitioned into a
subproblem on the type level and a master
problent on the family level. The subproblem is
to minimize the sum of the production
(overtime) cost and the inventory holding cost
at each time period, i.e.

(SP) Zep(t) =min ¢,0,+Y h I, (18)

(2)-(5),(7)

The subproblem (SP) is rivial and has the
following feasible and unique primal solution
which could be easily seen by inspection.

subject to

Fo= 2 Pﬂ Vi,
jet(i)

l,= 21, Vit (19
Jet(i)

O’ = max{O,Z,.k,Zje,(,-)R,'r —)'] Vi

Introducing the dual solution to (§7), the
following formulation of the master problem is
obtained.

(MP) Lyp =
nin 38, X+ My 20 1, +7q, (20)
it it jeriy ‘
subject to
2 u; .+
q, ; HjeTZ(f)P_jr il Vi, 2N
q,20 Yy (22)

and (2), (6), (7), (8)

where, ¢, is an auxiliary variable of the Benders

master problem, u; and v, are dual variables of
the subproblem (SP) whose values are:
- if G >0

uy = -k, v, = { ! r 23)

0 otherwise

respectively.

Now, a vector of multipliers A ={A} will
be mtroduced in order to price out the first
constraint of the master problem {(MP) into its
objcctive function. The authors [7] had also
imposed the following lower and upper bounds
on these multipliers in order to simplify the
relaxed model of (MP).

0< A, <1 V! (24)

Finally, [7] arrived at the following
formulation of the relaxed master problem.

(RMP)  Z gy (A)=min 35, X, +
it

(25)
2l 2 1_,-#2&[2“.-; 2 Pﬂ+vm]

it jer(i) t i JeT(i}
subjectto (2), (6), (7), (8)

According to the theory of Lagrangean
duality for integer programming, Aardal and
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Larsson [7] had obtained the greatest lower
bound for (PPS) by solving the following dual
probtem to the relaxed master problem.

(DRMP) Zpryp = max  Zgyp (A) (26)
subject to  (16).

In this paper, the model of Aardal and
Larsson [7] is simplified in the following way.
As it could be easily seen, the subproblem (SP)
as well as its solution is trivial, Instead of using
this decomposition technique, we substitute the
sets of constraints (4) and (5) directly into the
objective function of (PPS). Using the physical
delinition of O,. as shown in (19) and defining

P ¢, ifO, >0
a, =iy, = )
i = "o otherwise
then, we get the production cost (of the
overtime) b, = ¢, 0, as:

b=Fa, ¥ P-vy Ve

t ; IjET(i) Jt [ (28)

Now, we price out this constraint, which
replaces constraint (3), jointly with the
previously defined vector of multipliers A into
the objective function of (PPS) after
eliminating P, and [;;. We obtain the following
relaxed model.

ml-.n Z[[bn’ +Z/I” Z [ﬂ +Zserﬂ}+
I} 3 JeT(i) i

(29)
AJ[ZQH' Z Pjr =Y _bf]:|

i JeTri)

(2), (6) - (3).
Again by imposing lower and upper

bounds on A as shown in (16), we get the

foliowing relaxed problem for (PPS).

(RPPS) Zypps(A)=min Y5, X, +
g

subject to

(30)
Z!‘!i{ E ]j{+2’1([zai: z Pj‘r—yr"}]

it JeT(i) t i jerei)
(2).(6) - (8)

which is exactly the same relaxed model
(RMP), Eq. (25). The highest lower bound is
again obtained by maximizing the dual
problem to (RPPS), which is the same as
{DRMP), while the upper bound is obtained
directly from the objective function (1) of
(PPS). Although Zpamp < Zgpps, due to the

subject to

existence of lhe duality gap, (DRMP) has
shown to give a lower bound on (PFS) which 1s
much more tight to the optimal solution than a
linear program formulation of the probiem. The
solution procedure of this approach is as
follows.

Algorithm A2

Step (: Set k = 0 and choose an initial value for
)‘-U = {lk}

Step [: Solve the relaxed problem (RPPS) with
A= )\.;‘-.

Step 2: Update Ay

Step 3: If some preset stopping criterion is met,
then stop, otherwise, set k = & + [ and
goto step 1.

An acceptable initial value is to set Ay = 0. The
relaxed problem (RPPS) is an optimal control
problem and separates by families, for a certain
value of A, into a set of incapacitated lot-sizing
problems, each of which is easily solved by
dynamic programming. The procedure may
terminate after doing a fixed number of
iterations or if a preset duality gap is reached,
i.e. both the lower and upper bounds obtained
from steps 1 and 2 are close enough to each
other. Another termination criterion is when the
subgradient of A becomes zero. As mentioned
before, the updating of X is, at best, done using
subgradient optimization. It is also seen that a
lower bound to (PPS) could be obtained from
step I in Algorithm A2.

3. Subgradient Optimization

A standard method for solving the dual
problems arising in the above procedures,
problem (D) in Eq. (11) and problem (DRMP)
in Eq. (26), is the subgradient optimization
algorithm [13], in which a dual solutions are
updated according to

At = 4 + 8, 74 (310)
where, for a certain value of A, y represents the
subgradient of the relaxed problem at hand, 6 is
a step size and £ is the iteration counter,

From the Lagrangean  multipliers
procedure of Graves [9] presented above, the
relaxed problem has a subgradient v = {y,}
which could be expressed as

Yie = Z Pj.'_P'l Vit

JET()

(32)
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The respective step size is calculated as

g Plw=2(3)]

17T

where, w represents the current best upper
bound obtained, Z(X) is the current lower
bound and p is a step size parameter.

In the Benders decomposition approach
presented above, the relaxed problem has a
subgradient y ={ y,} which could be found as
follows. Let a, = {ay} and P, = {P;}, then

P

\T
y, :[U (_’,,J (34)

The choice of the step size parameter p in
{33) is critical to the behavior of the solution
procedure used. For convergence to occur and
to avoid cycling near the solution, the step size
is chosen such that the step size tends to zero
and the sum of the sequence of step sizes goes
to infinity. For the solution procedure of
Algorithm Al, we had obtained the best results
by using the following formula

l

p:lnﬁ+2l (35)

where k, as before, is the iteration counter, On
the other hand, we had found that the following
formula is more suitable to the solution
procedurc of Algorithm AZ.

1
P = K 36
(max {40,k}—39)** 2k4200 0

For other step size strategies, see e.g. [13, 14].

(33)

COMPUTATIONAL STUDY
AND IMPLEMENTATIONS

Case Studies

In this work, four sets of problems are used as
case studies for testing the procedures
discussed above. Each problem set consists of
nine problems. Each problem in the first two
sets of problems constitutes twenty families,
which, in turn, are aggregated into three types
with five families in each of the first two types
and ten families in the third type. The third and
fourth sets of problems contain product
structure of forty families aggregated also into
three types with ten families in each of the first

two types and the remaining (wenty families in
the third type. The number of time periods » is
twelve for all test problems. The overtime costs
and the inventory holding costs for the three
types are given the following values for all
time pertods.

¢, =50

Ve
f, =10, /hy, =175 and A, =15 }

The setup cost as well as the resource
coverage, i.e. the available regular time, is
assumed varied for all test problems, The setup
cost may have three different levels with the
lower level having one fifth the value of the
medium level and the higher level is five times
the medium level. The value of the setup cost
at the medium level at each time period for
each family belonging to type 7 is generated
randomly from the uniform distribution over
the range (é,gl) given in Table | below.

The levels of available regular time cover
80%, 100% and 120% of the time required for
the total demand over the planning horizon
which could be expressed as

rf = _,l;zkidu‘
it

and is constant for all time periods, where, k;,
the unit production time for type / are given the
following values:

ki = 1.0, k=20 and ki=1.5
The demand for family j in time period ¢
is given by
dy = fu U and  j e T(i)
Table 1 Setup costs Ranges of medium level.
Type 1 2 3
S, 50 100 100
S, 150 200 200

where f; 1s the seasonality demand factor for
families belonging to type / in period ¢ and ; is
the normal demand of family ;. No seasonal
variation in demand is considered for problems
in the first and third sets of problems (i.e. f; =
1.0 for all types in all time periods) while
seasonality factors for the second and fourth
sets of problems take the values in Table 2.

The normal demand u; of family j is
drawn randomly from the uniform distribution



M. 10 Alsaied Khalil

over the ranges (Qj,ﬁj]. The ranges for

families | — 20 are given in Table 3, and these
ranges are the same for families 21 — 40.
Finally, the initial inventory J;p of family /

distribution over the range (0, Q;) where O;
represents the economic order quantity of the
family, and is based on its average demand
rate, holding cost and the setup cost.

is drawn randomly from the uniform
Table 2 Demand seasonality factor for second and fourth sets of problems.

Time period 1 2 3 4 5 6 7 8 9 10 11 12
Type 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 i.0 1.0 1.0 [.0
Type 2 0.8 0.8 0.7 0.5 0.7 1.0 1.0 1.2 1.3 1.5 1.2 1.0
Type 3 [.0 1.0 (K¢ 1.2 1.3 1.5 1.3 1.0 0.9 0.7 0.6 08

Table 3 Ranges for the normal demand u; for the first 20 families.

J 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
QJ 20 40 15 25 80 80 15 40 40 55 20 20 30 30 20 30 30 50 60 40
D; |40 60 25 65 120 120 25 60 60 85 40 40 350 50 40 70 50 100 90 80

Implementations making use of its special block structure, and

An efficient optimal control algorithm for
production planning due to Proth [12] (chap. I)
is.used to solve the problems (DP) and (RPPS)
of this study. The algorithm is much faster than
the usual dynamic programming procedures of
Wagner and Whitin [8]. The algorithm gives an
optimal production plan for each family in each
call, i.e. it is called number of times equal to
number of families each iteration. At each
iteration, the solution to the dual problem
obtained from the subgradient optimization
algorithm is projected according the respective
projection condition, i.e. conditions (16) and
(24); respectively, to enforce the values of the
Lagrangean multipliers to lie within the bounds
mentioned above.

The revised simplex method is used to
solve the linear programming problem of the
Lagrangean multipliers approach. For this
method, we feed the simplex algorithm in the
first iteration with a basic feasible solution.
This initial feasible solution is set so as to
produce at each time period just to cover the
required demand in that period if the inventory
level is not enough. Then, the feasible solution
obtained from the output of the simplex
algorithm after each iteration is used as an
input feasible solution for the next iteration.
Similarly, the inverse of the input basic matrix
required for the simplex algorithm is initialized

its update obtained from the output of the
algorithm is again used as input to the next
iteration. In order to reduce the effect of error
propagation on the results, the input feasible
solution as well as the input inverse of the
basic matrix are initialized each number of
iterations, which is selected as twenty iterations
in our implementations. All implementations
are done using codes made by the author.

RESULTS AND DISCUSSIONS

The duality gap parameter (17), which is used
for convergence tests in our implementations,
represents the maximum deviation from the
optimum solution expected. Tables 4 — 7 report
the percentage duality gap (i.e. 100 g) obtained
from the solution procedure described in
Algorithm A1, while Tables 8§ — 11 report those
results obtained from the procedure described
in Algorithm AZ2. For each one of the thirty six
problems studied, we have made ten runs for
each problem with the same resource coverage
and setup cost factors, but with different
random generations of the data, and the figures
represented in the tables below are the mean
values of these ten of runs.

It has been observed that both algorithms
had reached a preset value of the duality gap
{less than or equal to 0.1% in our case) in some
problems (specially in those cases where high
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resource coverage 1s chosen with low or
medium setup costs), but after much fewer
iterations with Algorithm A2 than Algorithm
Al. In this concern, it has been observed that
one iteration of Algorithm Al requires
computational time (CPU time) which ranges
from six to fifteen times the time required for
one iteration of Algorithm A2, depending on

the operational mode of the computer system
used and on the type of problem (problem sets
I and 2 have higher ratios than sets 3 and 4).
Also in Algorithm A2, out of 360 test
examples, the exact optimal solution (i.e. zcro
duality gap) i1s reached in 29 of them, while in
another 41 test examples, a duality gap less
than 0.1% is obtained. On the other hand, using
Algorithm Al, a duality gap less than 0.1% is
obtained in 25 test examples and no exact
solution is obtained. In general, the results of
all of the thirty six problems but nine obtained
from Algorithm Al are better than those
obtained from Algorithm A2,

A comparison between the results of
Algorithm Al and those presented by Graves
[9] is presented in Table 12. The deviation of
all test problems but six have Dbetter
enhancements against those presented in [9].
On the other hand, a comparison between the
results obtained from Algorithm A2 and those
of Aardal and Larsson [7] is presented in Table
13. Also the deviation of all test problems but
six have better enhancements against those of
[7]. The enhancement of these results against
those of Aardal and Larsson [7] and Graves [9]
may be returned to the fact that step sizes are
more suitably chosen, to the simplification
done in the solution procedure presented in this
study and also to the fact that we have done
relatively more iterations than in [7] and [9].

Results of Algorithm A1

Table 4 Percentage duality gap for problem
set 1 (constant demand).

Setup cost Resource coverage, %
factor 80 100 120
0.2 0.798 2.229 0.264
1.0 0.689 3.190 0.103
5.0 1.005 2.485 1.073
Average 0.831 2.635 0.480

Table 5 Percenlage duality gap for problem
set 2 {seasonal demand).

Selup cost Resource coverage,%
factor 80 100 120
0.2 1.056 | 3.256 0.293
1.0 1.188 3.100 0.171
5.0 0.749 2.232 1.020
Average 0998 2.863 0.495

Table 6 Percentage duality gap for problem
set 3 {constant demand).

Setup cost Resource coverage, %
factor 80 100 120
0.2 0.620 1.027 0.164
1.0 0.513 1.135 0.112
5.0 0.312 [.199 0.326
Average 0.482 1.120 0.201

Table 7 Percentage duality gap for problem
set 4 (seasonal demand).

Sefup cost Resource coverage,%
factor 80 100 120
0.2 1.079 3.269 0.186
1.0 | 0918 1 1979 | 0.133 |
5.0 0.307 (.980 0.453
Average (.768 3114 0.257

Results of Algorithm A2

Table 8 Percentage duality gap for problem
set 1 (constant demand).

Setup cost Resource coverage, %
factor 80 100 120
| 0.2 1.733 2.489 0.000
.0 0.805 3.541 0.091
5.0 1.839 2.757 1.308
Average 1.459 2.929 0.466

Table 9 Percentage duality gap for problem
set 2 (seascnal demand).

Selup cost Resource coverage,%
factor 80 100 120
.2 2,747 3.936 0.077
1.0 1.263 3.467 (.572
5.0 [.421 2.873 1.326
Average
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Table 10 Percentage duality gap for problem
set 3 (seasonal demand).

Table 11 Percentage duality gap for problem
set 4 (seasonal demand).

| Setup cost Resource coverage, % Setup cost Resource coverage,%
factor 80 100 120 100 120
0.2 0.703 1.385 0.000 0.2 1.005 2.460 0.100
1.0 0.324 1.208 0.038 1.0 0.422 2.249 0.182
5.0 0.524 1.352 0.543 5.0 0.427 1.238 0.819
Average 0.517 1.315 0.194 Average 0.618 1.982 0.367
Table 12 Comparison with the work of Craves [9].
Deviation, % Problems with Averages of problems, %
Min. Max. Mean g>2.5% g>2.0% Set 1 Set 2 Set 3 Set 4
Presentwork | 0.0 3.269 | L.101 4 7 1.315 | 1.452 | 0.601 1.034
Graves 0.2 4.4 2.2 14 19 1.9 2.0 2.8 1.8

Table 13 Comparison with the work of Aardal and Larsson [7].

_ Deviation, % Problems wilh Averages of problems, %
Min. Max. Mean [ g>»2.5% | g22.0% Set | Set2 Set 3 Set 4

Present work 0.0 3.936 1.311 6 9 1.618 1.960 0.675 0.989

Aardal, et al 0.0 5.95 2.34 13 18 2,27 2.54 1.93 2.60
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