LYAPUNOV STABILITY ANALYSIS OF LARGE-SCALE POWER SYSTEMS USING THE DECOPMOSITION-AGGREGATION METHOD

H.Shaaban

Assist. Prot. . Faculty of Engineering and Technology. Menoutia University.
Shebin El-Kom, Egypt.

Abstract

: The aim of this paper is to carry out transient stability analysis of an N -machine power system using the decomposition-agoregation method, and considering a more sophisticated generator model. Each of the system generators is represented by the socalled 2-axis model [1], in which the two components E_{q}^{\prime} and $E_{\text {dd }}^{\prime}$ of the generator internal voltage E^{\prime} are considered to change with time. This is instead of assuming the voltage E^{\prime}, or the voltage component $\mathrm{E}_{\mathrm{d}}^{\prime}$, to be constant as usually considered, for simplicity, in power system stability analysis using the direct methods. The system network. in which the loads are represented by constant impedances. is reduced to the generators internal nodes. Describing each generator by a fouth-order dynamic model, and considering uniform mechanical damping, the system mathematical model (the transfer conductances are included) is obtained and decomposed into ($\mathrm{N}-1$) interconnected subsystems by using the pair-wise decomposition. A square aggregation matrix of the order ($\mathrm{N}-1$) is obtained, and stability of this matrix implies asymptotic stability of the system equilibrium. The developed stability approach is applied to a 3 -machine, 4-bus power system example and an estimate for the system asymptotic stability domain is determined. A 3 -phase short circuit fault. with successtill reclosure. is assumed near a system bus. and the stability computations are carried out. A reclosure time for the faulted line is deternined such that the system can regain its prefault (normal) conditions. It is shown that the developed approach is suitable and applicable in practical and on-line stability studies of power systems.

1 Introduction

With the advent of large power systems came a renewed interest in the stability properties of such systems. Indeed, the tendency of a power system to lose synchronism appears to be much more prevalent for large systems than for relatively isolated groups. Most stablity investigations of large power systems are based on direct simulation of the sysiem and integration of the differential equations of the system for various initial conditions. and to observe if the warious machines tend to lose or maintain synchronism. However, this method becomes cumbersome and very costly for very large systems involving a great number of generators. This explains the need for direct methods for stabil-

[^0]ity investigations. These methods determine stability without explicitly solving the differential equations describing the system dynamics. Obviousty, the direct methods advantage over the standard numerical integration procedure is their rapidity and the resulting saving of computing time [2].
However, the direct methods of stability analysis are acknowledged to provide satisfactory practical results. as far as the use of a simplified mathematical system description may be acceptable. It is to be noted that only classical generator model(that is .constant internal voltage behind the generator transient reactance) can be used. and the effects of control and stability aids can not be represented [3].

Because of the high efficiency of the Lyapunov's direct method, it has important applications in power system desien and operation. It can be used, for example, for estimating critical fault clearing time, for on-line security assessment, and for emergency control. This method has come, recently, to possess accuracy well consistent with results predicted by simulations for relatively simplified system representations [4].

In the last two decades the decomposition-ageregation method, which is based on Bellman's concept of vector Lyapunov functions[5], has been used for stability anatysis of large-scale power systems[6-17].
In Ref.[18], matrix Lyapunov fimetion was constructed and used for the system aggregation.
However, the expected advantages of the decomposition-aggregation method are numerous[19]. It is obvious that the Lyapunov function of a low-order disconnected (fiee)subsystem can handle more sophisticated generator and transmission models. Furthermore, exact estimates of the overall system stability domain may be defined.

It is to be noted that . the power system stability analysis was carried out in the papers[6-18], considering the generator classical model. This is equivalent to neglecting the effect of generators flux decays.

In the papers[4,20-22]. the transient stability analysis of multimachine power systems have been carried out considering the generator third-order dynamic model that is, the generator intemal voltage component $\mathrm{E}_{\mathrm{q}}^{\prime}$. is changed with time. while the voltage component $E^{\prime} d$, is kept constant during the transient period. The authors applied the scalar Lyapunov function approach, and they introduced different forms for the used (scalar) Lyapunov finctions which were constructed under the assumption that all transfer conductances G_{ij}, are neglected.

In the present paper an N -machine power system is considered, and the two internal voltage components E_{q}^{\prime} and E_{d}^{\prime} of each machine are assumed to change with time. Assuming the uniform mechanical damping case and applying the pair-wise decomposition (each subsystem including two machines, one of them is the comparison machine) the system mathematical model (the transfer conductances are taken into consideration) is obtained. and it is decomposed into $\mathrm{N}-1$ interconnected subsystems: Then, each subsystem is decomposed into free (disconmected) subsystem contains three (the largest number) nonlinearities, and interconnections. Finally, a square aggregation matrix of the order ($\mathrm{N}-1$) is obtained .and stability of this matrix implies asymptotic stability of the system equilibrium.

3 Power system model

Consider an N -machine power system (the transfer conductances are included) with mechanical damping, and let us assume that the machine parameters M_{i} and P_{m} are constant .

Now assume that each machine (the stator resistance is neglected) is represented by the two-axis model [1], in which the two components $\mathrm{E}_{\mathrm{q}}^{\prime}$ and $\mathrm{E}_{\mathrm{d}}^{\prime}$ of the intemal voltage

E' (see Fig. 1) are considered to be time variables. The absolute motion of the th machine is described by the equations,

Fig. 1 Phasor diagram of system generator

$$
\begin{align*}
& M_{i} \ddot{\delta}_{i}+D_{i} \dot{\delta}_{i}=P_{m i}-P_{e i} \\
& T_{d 0 i}^{\prime} \dot{E}_{q i}^{\prime}=E_{f d i}-E_{q i}^{\prime}+\left(X_{d i}-X_{d i}^{\prime}\right) I_{d i} \\
& T_{q \rho i}^{\prime} \dot{E}_{d i}^{\prime}=-E_{d i}^{\prime}-\left(X_{q i}-X_{q i}^{\prime}\right) I_{q i} \tag{1}
\end{align*}
$$

where

$$
\begin{equation*}
\mathrm{F}_{\mathrm{e} i}=\mathrm{E}_{\mathrm{di}}^{\prime} \mathrm{I}_{\mathrm{di}}+\mathrm{E}_{\mathrm{qi}}^{\prime} \mathrm{I}_{\mathrm{qi}}-\left(\mathrm{X}_{\mathrm{qi}}^{\prime}-\mathrm{X}_{\mathrm{di}}^{\prime}\right) \mathrm{I}_{\mathrm{di}} \mathrm{I}_{\mathrm{qi}}, \mathrm{i}=1,2, \tag{2}
\end{equation*}
$$

It is to be noted that, the dynamics of the automatic voltage regulator (AVR) are not considered, for simplicity, and hence the voltage Efdi will be equal to its pretransient value Eli.

Under the assumption $\mathrm{X}_{\mathrm{di}}=\mathrm{X}_{\mathrm{qi}}$ (machines with solid cylindrical rotors are considered). we get [1],

$$
\begin{align*}
& \mathrm{N} \\
& F_{\mathrm{ti}}=\sum \mathrm{Y}_{\mathrm{ij}}\left\{\mathrm{E}_{\mathrm{qi}}\left[\mathrm{E}_{\mathrm{qj}}^{\prime} \cos \left(\theta_{\mathrm{ij}}-\hat{\mathrm{o}} \mathrm{ij}\right)-\mathrm{E}_{\mathrm{dj}} \sin \left(\theta_{\mathrm{ij}}-\hat{\mathrm{o}}_{\mathrm{ij}}\right)\right]+\right. \\
& \left.j=i \quad+E_{d i}^{\prime}\left[E_{d j}^{\prime} \cos \left(\theta_{i j}-\delta_{i j}\right)+E_{q j}^{\prime} \sin \left(\theta_{i j}-\delta_{i j}\right)\right]\right\} \quad i=1.2 \ldots \ldots \ldots . n \tag{3}
\end{align*}
$$

where \hat{o}_{i}, is the rotor angle of the i-th machine, or position of the rotor q-axis from the common reference frame.

Now, let us introduce the following ($4 \mathrm{~N}-\mathrm{l}$) state variables (the Nth machine is selected as a comparison machine)

$$
\begin{align*}
& \sigma_{\mathrm{iN}}=\delta_{\mathrm{iN}}-\delta_{\mathrm{iN}}^{\mathrm{o}} \quad \quad \mathrm{i}=\mathrm{N} \\
& \omega_{i}=\dot{\dot{\delta}}_{i} \quad, i=1,2 \ldots \ldots \ldots, N \tag{4}
\end{align*}
$$

Assuming the uniform damping case, that is, when

$$
\begin{equation*}
\left(D_{i} / M_{i}\right)=\lambda \quad . i=t .2, \ldots \ldots \ldots \ldots . N \tag{5}
\end{equation*}
$$

we can derive the mathematical model of the whole system as

$$
\begin{aligned}
& \dot{\sigma}_{\mathrm{iN}}=\omega_{\mathrm{i}}-\omega_{\mathrm{N}}=\omega_{\mathrm{iN}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\cos \left(\theta_{\mathrm{ij}}-\delta_{\mathrm{ij}}\right)+\left\{\mathrm{E}_{\mathrm{Di}}\left(\mathrm{E}_{\mathrm{Qj}}+{ }^{\frac{c}{E_{q j}}}{ }_{\mathrm{d}}\right)-\mathrm{E}_{\mathrm{Qi}}\left(\mathrm{E}_{\mathrm{Dj}}+\mathrm{E}_{\mathrm{dj}}^{\prime}\right)\right\} \sin \left(\theta_{\mathrm{ij}}-\delta_{\mathrm{ij}}\right)\right] \\
& T_{d o i}^{\prime} \dot{E}_{\mathrm{Qi}}=-\left[1-\left(X_{d i}-X_{d i}^{\prime}\right) B_{i j}\right] E_{Q i}+\left(X_{d i}-X_{d i}^{\prime}\right)\left[G_{i i} E_{D i}+\sum_{i j}\left\{\stackrel { \circ } { E } _ { d j } ^ { \prime } f _ { j j } \left\{\left(\sigma_{i j}\right)-\right.\right.\right. \\
& \left.\left.-\mathrm{E}_{\mathrm{qj}}^{\prime} g_{\mathrm{ij}}\left(\sigma_{\mathrm{ij}}\right)+\mathrm{E}_{\mathrm{Qj}} \sin \left(\theta_{\mathrm{ij}}-{ }_{\mathrm{s}}^{\mathrm{ij}} \text { }\right)+\mathrm{E}_{\mathrm{Dj}} \cos \left(\theta_{\mathrm{ij}}-\delta_{\mathrm{ij}}\right)\right\}\right]
\end{aligned}
$$

$$
\begin{align*}
& \left.\left.+\stackrel{\circ}{E}_{\mathrm{dj}} g_{\mathrm{ij}}\left(\sigma_{\mathrm{ij}}\right)+\mathrm{E}_{\mathrm{Qj}} \cos \left(\theta_{\mathrm{ij}}-\hat{\sigma}_{\mathrm{ij}}\right)-\mathrm{E}_{\mathrm{Dj}} \sin \left(\theta_{\mathrm{ij}}-\delta_{\mathrm{ij}}\right)\right\}\right] \\
& N \quad, i=1,2, \ldots, N \tag{6}
\end{align*}
$$

where, Σ is defined as Σ, and the nonlinear functions f_{ij} and g_{ij} are given as

$$
\begin{align*}
& f_{i j}^{j \neq i}\left(\sigma_{i j}\right)=\cos \left(\sigma_{i j}+\delta_{i j}-\theta_{i j}\right)-\cos \left(\delta_{i j}-\theta_{i j}\right) \\
& g_{i j}\left(\sigma_{i j}\right)=\sin \left(\sigma_{i j}+\delta_{i j}-\theta_{i j}\right)-\sin \left(\delta_{i j}-\theta_{i j}\right)
\end{align*}
$$

3 Power system decomposition

Decomposition of the considered N -machine system is carried out , in the paper, as follows:

1- All the system loads are represented by constant impedances to ground (those impedances are obtained from the pretransient conditions in the system).

2 - All the system nodes, except the generators internal nodes, are eliminated. Hence, we obtain the system Nth-order reduced admittance matrix \mathbf{Y}.

3- Referring to the obtained \mathbf{Y}-matrix, and using the pair-wise decomposition [7-9.1114] the system is decomposed into ($\mathrm{N}-1$) "two-machine" subsystems.

Now, defining the state vector X_{I} in the form

$$
\begin{equation*}
\mathrm{X}_{\mathrm{F}}\left[\sigma_{\mathrm{iN}}, \omega_{\mathrm{iN}}, \mathrm{E}_{\mathrm{Qi}}, \mathrm{E}_{\mathrm{Di}}, \mathrm{E}_{\mathrm{QN}}, \mathrm{E}_{\mathrm{DN}}\right]^{\mathrm{T}}=\left[\mathrm{X}_{\mathrm{I} 1}, \mathrm{X}_{\mathrm{I} 2}, \mathrm{X}_{\mathrm{I} 3}, \mathrm{X}_{\mathrm{I} 4}, \mathrm{X}_{\mathrm{I}}, \mathrm{X}_{\mathrm{I} 6}\right]^{\mathrm{T}} \tag{8}
\end{equation*}
$$

we can decompose the mathematical model of the whole system (eqn. 6) into $\mathrm{S}=\mathrm{N}-1$ sixth-order interconnected subsystems. Each subsystem can be written in the general form

$$
\begin{equation*}
\dot{X}_{I}=P_{I} X_{I}+B_{I} F_{I}\left(\sigma_{I}\right)+h_{I}(X), \sigma_{I}=C_{I} X_{I}, I=1,2, \ldots \ldots . S \tag{9}
\end{equation*}
$$

where $\mathrm{P}_{\mathrm{I}}, \mathrm{B}_{\mathrm{I}}$ and C_{I} are constant matrices with appropriate dimensions, and $\mathrm{F}_{\mathrm{I}}(\sigma$ I) is a nonlinear vector function, whose elements are arbitrary chosen.

Referring to eqn. 8. We derive the matrix P_{I} in the form

Now, in order to obtain a larger stability domain estimate (13-17], it is assumed that the following three (the largest number) nonlinear functions (see eqn. 7) are included in the vector F_{I}.

$$
\begin{align*}
& f_{11}\left(\sigma_{H}\right)=\cos \left(\sigma_{\mathrm{iN}}+\delta_{i \mathrm{~N}}^{\circ}-\theta_{\mathrm{iN}}\right)-\cos \left(\delta_{\mathrm{iN}}-\theta_{\mathrm{NN}}\right) \\
& f_{I 2}\left(\sigma_{I 2}\right)=\sin \left(\sigma_{\mathrm{iN}}+\delta_{\mathrm{iN}}\right)-\sin \hat{\delta}_{\mathrm{iN}} \\
& f_{I 3}\left(\sigma_{I 3}\right)=\cos \left(\sigma_{\mathrm{Ni}}+\delta_{\mathrm{Ni}}-\theta_{\mathrm{iN}}\right)-\cos \left(\delta_{\mathrm{Ni}}-\theta_{\mathrm{iN}}\right) \tag{11}
\end{align*}
$$

Note carefully that the three functions given by eqn.11, satisfy the following conditions

$$
\begin{equation*}
f_{l k}(0)=0 ; 0 \leq \sigma_{I k} f_{I k}\left(\sigma_{l k}\right) \leq \xi_{i k} \sigma_{i k}^{2} \quad, \mathrm{k}=1,2,3 \tag{12}
\end{equation*}
$$

on the bounded intervals which are detined for the three finctions. respectively, as follows

$$
\begin{align*}
&-2\left(\pi-\theta_{i N}+\delta_{i N}\right) \leq \sigma_{i N} \leq 2\left(\theta_{i N}-\delta_{i N}^{o}\right) \\
&-\left(\pi_{i N}+2 \delta_{i N}^{\circ}\right) \leq \sigma_{i N} \leq\left(\pi-2 \delta_{i N}^{o}\right) \\
&-2\left(\pi-\theta_{i N}-\delta_{\mathrm{iN}}^{c}\right) \leq \sigma_{\mathrm{Ni}} \leq 2\left(\theta_{\mathrm{N}}+\delta_{\mathrm{iN}}^{c}\right) \tag{13}
\end{align*}
$$

In eqn.12, the positive coustants $\xi \mathrm{ak}$ may be determined as

$$
\begin{equation*}
\xi_{I k}=\partial f_{I_{k}}\left(\sigma_{I_{k}}\right) / \partial \sigma_{Z_{k}} \mid \sigma_{I k}=0, \mathrm{k}=1,2,3 \tag{14}
\end{equation*}
$$

Note also that there exist positive constants. $\varepsilon_{\mathrm{lk}} \in\left(0, \xi_{\mathrm{lk}}\right)$, for which the following condition

$$
\begin{equation*}
\sigma_{l k} j_{l k}\left(\sigma_{I k}\right) \geq \varepsilon_{I k} \sigma_{l k}^{2} \quad, \mathrm{k}=1,2,3 \tag{15}
\end{equation*}
$$

is satisfied on the compact interval of $\sigma_{l k}$.

$$
\begin{equation*}
\mathrm{U}_{\mathbf{I k}}=\left[\underline{\mathrm{U}}_{\mathbf{I k}}, \overline{\mathrm{U}}_{\mathfrak{l k}}\right] \quad, \mathrm{k}=1,2,3 \tag{16}
\end{equation*}
$$

where $\underline{U}_{\mathbb{I k}}, \overline{\mathrm{T}}_{\mathbb{k}}$ are the negative and positive solutions, respectively, of the equation

$$
\begin{equation*}
f_{I k}\left(\sigma_{I k}\right)=\varepsilon_{I k} \sigma_{I k} \quad, \quad, \mathbf{k}=1,2,3 \tag{17}
\end{equation*}
$$

Now, referring to eqn 6 , we define the following matrices

$$
\begin{equation*}
\mathrm{F}_{\mathrm{I}}\left(\sigma_{\mathrm{I}}\right)=\left[f_{I I}\left(\sigma_{I I}\right), f_{I 2}\left(\sigma_{I 2}\right), f_{I 3}\left(\sigma_{I 3}\right)\right]^{\mathrm{T}} \tag{18}
\end{equation*}
$$

$$
\mathrm{CT}_{\mathrm{I}}=\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & 0 \tag{19}\\
1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Let us . for simplicity . write the (vector) matrix $\mathrm{h}_{\mathrm{I}}(\mathrm{X})$, as the sum of two (vector) matrices.

$$
\begin{equation*}
h_{I}(X)=h_{I}\left(X_{I}\right)+h_{I}{ }_{I}(X) \tag{21}
\end{equation*}
$$

where

$$
h_{1}\left(X_{I}\right)=\left[0, h_{12}\left(X_{I}\right), h_{13}\left(X_{I}\right), h_{14}\left(X_{1}\right), h_{I 5}\left(X_{I}\right), h_{16}\left(X_{I}\right)\right]^{T}
$$

$$
\begin{equation*}
\left.h^{*}(X)=10, h_{12}^{*}(X), h_{13}^{*}(X), h_{14}^{*}(X), h_{15}^{*}(X), h_{16}^{*}(X)\right]^{T} \tag{22}
\end{equation*}
$$

The elements of the (vector) matrix $h_{I}\left(X_{I}\right)$, are given as
and the elements of the matrix $h_{I}^{*}(X)$, are defined as

$$
\left.+X_{\mathrm{J} 4} \cos \left(\theta_{\mathrm{ij}}-\delta_{\mathrm{ij}}\right)\right\}
$$

$$
{h^{*}}_{14}(\mathrm{X})=-\mathrm{L}_{\mathrm{i}} \sum \mathrm{Y}_{\mathrm{ij}}\left\{\left[\stackrel{\circ}{\mathrm{qj}}_{\prime}^{\prime} f_{i j}\left(\sigma_{i j}\right)+\stackrel{o}{\mathrm{E}}_{\mathrm{dj}}^{\prime} g_{i j}\left(\sigma_{i j}\right)\right]+\mathrm{X}_{33} \cos \left(\theta_{\mathrm{ij}}-\delta_{i j}\right)-\right.
$$

$$
\left.-\mathrm{X}_{\mathrm{J} 4} \sin \left(\theta_{\mathrm{ij}}-\delta_{\mathrm{o}}\right)\right\}
$$

$$
\mathrm{h}_{\mathrm{IS}}^{*}(\mathrm{X})=\mathrm{K}_{\mathrm{N}} \Sigma \mathrm{Y}_{\mathrm{Nj}}\left\{\stackrel{\mathrm{E}}{\mathrm{dj}}_{\mathrm{o}^{\prime}} f_{N j}\left(\sigma_{M j}\right)-\stackrel{\circ}{\mathrm{E}}_{\mathrm{q} j}^{\prime} g_{N j}\left(\sigma_{N j}\right)\right]+
$$

$$
\left.+X_{J 3} \sin \left(\theta_{N j}-\delta_{0}{ }_{N j}\right)+X_{J 4} \cos \left(\theta_{N j}-\delta_{N j}\right)\right\}
$$

$$
\begin{equation*}
\left.+\mathrm{X}_{\mathrm{J} 3} \cos \left(\theta_{\mathrm{Nj}}-\delta_{\mathrm{Nj}}\right)-\mathrm{X}_{\mathrm{J} 4} \sin \left(\theta_{\mathrm{Nj}}-\delta_{\mathrm{Nj}}\right)\right\} \tag{23}
\end{equation*}
$$

$\mathrm{N}-1$
Note that Σ is defined as Σ, and the nonlinear function $f^{*}{ }_{14}\left(X_{11}\right)$, is given in the form $j \neq i$

$$
t_{I 4}^{*}\left(\mathrm{X}_{I 1}\right)=\cos \left(\mathrm{X}_{I 1}+\delta_{o n}\right)-\cos \delta_{\mathrm{iN}}^{a}
$$

$$
\begin{aligned}
& \left.\left.\left.-\mathrm{X}_{\mathrm{I} 4} \mathrm{X}_{\mathrm{J} 3}\right] \sin \left(\theta_{\mathrm{ij}}-\delta_{\mathrm{ij}}\right)\right\}\right]+\left(1 / \mathrm{M}_{\mathrm{N}}\right)\left[\mathrm { Y } _ { \mathrm { Nj } } \left\{\left[\mathrm{A}_{\mathrm{jN}} f_{\mathrm{Nj}}\left(\sigma_{\mathrm{N} j}\right)+\right.\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\mathrm{X}_{\mathrm{I} 5} \mathrm{X}_{\mathrm{J} 3}+\mathrm{X}_{\mathrm{I} 6} \mathrm{X}_{\mathrm{J} 4}\right] \cos \left(\theta_{\mathrm{Nj}}-\delta_{\mathrm{Nj}}\right)-\left[\mathrm{E}_{\mathrm{qN}} \mathrm{X}_{\mathrm{J4}}-\mathrm{E}^{\prime}{ }_{\mathrm{dN}} \mathrm{X}_{\mathrm{J} 3}+\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left(1 / M_{N}\right)\right] A_{i N}^{*} B_{\text {iN }} f_{14}^{*}\left(X_{\mathrm{IN}}\right)-Y_{\text {iN }}\left[\left(1 / M_{i}\right) \cos \left(\theta_{\mathrm{iN}}-\delta_{\text {iN }}\right)-\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\stackrel{\circ}{E}_{\mathrm{E}}^{\mathrm{di}} \mathrm{X}_{16}+\mathrm{X}_{\mathrm{D}} \mathrm{X}_{\mathrm{IS}}+\mathrm{X}_{14} \mathrm{X}_{\mathrm{I6}}\right\}-\mathrm{Y}_{\mathrm{iN}}\left[\left(1 / \mathrm{M}_{\mathrm{i}}\right) \sin \left(\theta_{\mathrm{iN}}-\delta_{\mathrm{iN}}\right)+\right. \\
& \left.+\left(1 / M_{N}\right) \sin \left(\theta_{i N}-\delta_{N i}\right)\right\}\left\{-E_{d N}^{\prime} X_{13}+\mathrm{E}_{q \mathrm{~N}}^{\prime} X_{I 4}+\mathrm{E}_{\mathrm{di}}^{\prime} \mathrm{X}_{\mathrm{I} 5}-\right. \\
& \left.-{ }_{-1}^{9}{ }_{q} \mathrm{X}_{\mathrm{I} 6}+\mathrm{X}_{\mathrm{I} 3} \mathrm{X}_{\mathrm{I} 6}+\mathrm{X}_{\mathrm{I4}} \mathrm{X}_{\mathrm{I} 5}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\mathrm{X}_{\mathrm{I6}} \cos \left(\theta_{\mathrm{iN}}-\delta_{\mathrm{iN}}\right)\right] \\
& \mathrm{h}_{\mathrm{I} 4}\left(\mathrm{X}_{\mathrm{I}}\right)=\mathrm{L}_{\mathrm{i}} \stackrel{\circ}{\mathrm{E}}_{\mathrm{dN}} \mathrm{~B}_{\mathrm{iN}} \mathrm{f}_{\mathrm{IL}}^{*}\left(\mathrm{X}_{\mathrm{II}}\right)+\mathrm{L}_{\mathrm{i}} \mathrm{Y}_{\mathrm{iN}}\left[\mathrm{X}_{\mathrm{I} 6} \sin \left(\theta_{\mathrm{iN}}-\delta_{\mathrm{iN}}\right)-\right. \\
& -\mathrm{X}_{\mathrm{IS}} \cos \left(\theta_{\mathrm{iN}}{ }^{--} \delta_{\mathrm{iN}}\right) \mathrm{J}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+X_{I 4} \cos \left(\theta_{i N}+\delta_{i N}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\mathrm{X}_{\mathrm{I} 3} \cos \left(\theta_{\mathrm{iN}}+\delta_{\mathrm{iNS}}\right)\right]
\end{aligned}
$$

4 Power system agereqation

Let us, as a first step, decompose each of the intercomected subsystems of eq. 9 , into the free (disconnected) subsystem, described by the equations

$$
\begin{equation*}
\dot{X}_{I}=P_{I} X_{I}+B_{I} F_{I}\left(\sigma_{I}\right) ; \sigma_{I}=C^{T} \mathrm{X}_{\mathrm{I}} \quad, \mathrm{I}=1,2, \ldots \ldots, \mathrm{~S} \tag{25}
\end{equation*}
$$

and the interconnections $h_{I}(X)$.
Next, we accept a free subsystem Lyapunov function in the form [7-10, 13-17],

$$
\begin{equation*}
\mathrm{V}_{\mathrm{I}}\left(\mathrm{X}_{\mathrm{I}}\right)=\mathrm{X}_{\mathrm{I}} \mathrm{~T} \mathrm{H}_{\mathrm{I}} \mathrm{X}_{\mathrm{I}}+\underset{\mathrm{m}=1}{\sum \gamma_{I m}} \int_{0}^{\sigma_{\mathrm{I}}} f_{I m}\left(\sigma_{I m}\right) d \sigma_{I m}, \mathrm{I}=1,2, \ldots, \mathrm{~S} \tag{26}
\end{equation*}
$$

where H_{I} is sixth-order symmetric positive definite matrix, $\gamma_{I m}$ are arbitrary positive numbers, and the nonlinear functions $f_{I m}$ are given by eqn. 11. Finally, following the aggregation procedure in Reference 23, an aggregation matrix, $A=\left\{\alpha_{I J}\right]$, is constructed. .The elements (real numbers) of this matrix obey the inequality

$$
\begin{equation*}
\dot{V}_{\mathrm{I}}\left(\mathrm{X}_{\mathrm{I}}\right) \leq \sum_{\mathrm{J}=1}^{S} \alpha_{\mathrm{IJ}} \mathrm{U}_{\mathrm{I}}\left(\mathrm{X}_{\mathrm{I}}\right) \mathrm{U}_{\mathrm{J}}\left(\mathrm{X}_{\mathrm{J}}\right), \mathrm{I}=1,2, \ldots \ldots \ldots, \mathrm{~S} \tag{27}
\end{equation*}
$$

where $\dot{\mathrm{V}}_{\mathrm{I}}\left(\mathrm{X}_{\mathrm{I}}\right)$, is the total time derivative of the function $\mathrm{V}_{\mathrm{I}}\left(\mathrm{X}_{\mathrm{I}}\right)$, along the motion of the i -th intercomected subsystem of eqn. 9.
It is to be noted that the left-hand side of eqn. 27 , can be written as

$$
\begin{equation*}
\dot{\mathrm{V}}_{I}\left(X_{I}\right)=\dot{\mathrm{v}}_{I}\left(X_{I}\right)_{f}+\left[\operatorname{grad} V_{I}\left(X_{I}\right)\right]^{T} h_{I}(X) \tag{28}
\end{equation*}
$$

where $\mathrm{V}_{\mathrm{I}}\left(\mathrm{X}_{\mathrm{I}}\right)_{\mathrm{f}}$, is the total time derivative of the function V_{I}, along the motion of the i-th free subsystem.

In eqn. 27, the comparison functions U_{I} and U_{J}, are chosen in the form [7,9]

$$
\begin{equation*}
U_{k}\left(X_{k}\right)=\left\|X_{k}\right\|=\left(X_{k} X_{k}\right)^{1 / 2} \quad \text { for } k=1,2, \ldots \ldots \ldots, S \tag{29}
\end{equation*}
$$

4.1 Stability criterion

According to theorem 1 of Reference 23, stability of the aggregation matrix , $A=\left[\alpha_{\mathrm{ik}}\right]$, or, equivalently, if it is satisfied the Hick's conditions

$$
\begin{align*}
& (-1)^{\mathrm{k}}\left[\begin{array}{cccc}
\alpha_{11} & \alpha_{12} & \ldots ~ & \alpha_{1 \mathrm{k}} \\
\alpha_{21} & \alpha_{22} & \ldots ~ & \alpha_{2 \mathrm{k}} \\
\vdots & \vdots & & \vdots \\
\alpha_{\mathrm{k} 1} & \alpha_{\mathrm{k} 2} & \ldots ~ & \alpha_{\mathrm{kk}}
\end{array}\right] \tag{30}\\
& \text { implies asymptotic stability of the system equilibrium. }
\end{align*}
$$

$$
>0
$$

$$
\mathrm{k}=1,2, \ldots \mathrm{S}
$$

4.2 Aggregation matrix

As a first step for determining the system aggregation matrix, the two terms in the right-hand side of eqn. 28 , are computed. Then the following majorizations are introduced,

$$
\begin{align*}
& \left|f^{*}{ }_{I 4}\left(X_{I I}\right)\right| \leq \eta_{\mathrm{i}}\left|X_{\mathrm{II}}\right| \quad . \quad \eta_{\mathrm{i}}=\left|\sin \delta_{\mathrm{Ni}}^{\circ}\right| \\
& \left|f_{i j}\left(\sigma_{\mathrm{ij}}\right)\right| \leq \xi_{\mathrm{ij}}\left(1 \mathrm{X}_{\mathrm{II}} 1+1 \mathrm{X}_{\mathrm{Jl}} 1\right), \xi_{\mathrm{ij}}=I \sin \left(\theta_{\mathrm{ij}}-\delta_{\mathrm{\delta}}^{\mathrm{o}} \mathrm{f}\right) \mid \\
& \left|\mathrm{g}_{\mathrm{ij}}\left(\sigma_{\mathrm{ij}}\right)\right| \leq \xi_{\mathrm{ij}}^{*}\left(\left|\mathrm{X}_{\mathrm{Il}}\right|+1 \mathrm{X}_{\mathrm{Il}} \mid\right), \xi_{\mathrm{ij}}^{*}=\left|\cos \left(\theta_{\mathrm{ij}}-\stackrel{\circ}{\delta}_{\mathrm{ij}}\right)\right| \\
& \left|f_{N j}\left(\sigma_{N j}\right)\right| \leq \xi_{N j}\left|X_{I 1}\right| \quad, \quad \xi_{N j}=1 \sin \left(\theta_{j N^{+}} \delta_{j N}\right) \mid \\
& \left|g_{\mathrm{Nj}}\left(\sigma_{\mathrm{Nj}}\right)\right| \leq \xi^{*} \mathrm{Nj} 1 \mathrm{X}_{\mathrm{Jl}} \mathrm{I} \quad, \quad \xi_{\mathrm{Nj}}^{*}=1 \cos \left(\theta_{\mathrm{j}} \mathrm{~N}^{+} \delta_{\mathrm{jN}}\right) \text {) } \\
& a \sin (\theta-\delta)+b \cos (\theta-\delta) \leq \sqrt{a^{2}+b^{2}} \tag{31}
\end{align*}
$$

where, a and b are any given (positive, negative, or even zero) numbers. Finally, the right-hand side of eqn. 28 , is majorized as,

$$
\dot{V}_{\mathrm{I}}\left(\mathrm{X}_{\mathrm{I}}\right) \leq-\lambda_{\mathrm{I}}^{*}\left\|\mathrm{X}_{\mathrm{I}}\right\|^{2}+\sum_{\mathrm{K} \neq 1}^{\mathrm{S}} 2 Z_{2}\left(\mathrm{Z}_{\mathrm{I}}^{*} ; \mathrm{Z}_{\mathrm{I}}^{\sim}\right)\left\|\mathrm{X}_{\mathrm{I}}\right\|\left\|X_{\mathrm{K}}\right\|, \mathrm{I}=1,2, \ldots \ldots, \mathrm{~S}
$$

where $\lambda^{*}{ }_{\mathrm{I}}$ is the minimal (positive) eigenvalue of the sixth-order symmetric matrix R_{I}, whose elements are given by eqn. 35 , and the elements Z_{I}^{*} and $Z^{\sim} \sim$ are defined by eqn. 37 (see Appendix).
Comparing eqns. 27 and 32 , the system aggregation matrix , $A=\left[\alpha_{I K}\right]$, of order ($\mathrm{N}-1$) is derived, and its elements are defined as

$$
\alpha \text { IK }= \begin{cases}-\lambda_{I}^{*} & , \mathrm{~K}=\mathrm{I} \tag{33}\\ 2 Z_{2}\left(Z_{I}^{*} ; Z_{\sim}^{\sim}\right), K \neq I & K, I=1,2, \ldots, S=N-1\end{cases}
$$

It is of importance to note that, stability of the ageregation matrix A (see condition 30), can be easily ensured for larger values of the eigenvalue λ^{*}, and $/$ or smaller values of the off-diagonal elements $\alpha_{i j}$. However, smaller values of the elements $\alpha_{i j}$, can be obtained by decomposing the system, referring to the reduced admittance matrix \mathbf{Y}, so that only weak interconnections among internal nodes of the system machines appear as subsystem couplings.

5 Numerical example

Fig. 2 shows the one-line diagram of the 3-machine, 4-bus power system which is chosen, in this example, for an application of the developed stability approach. The system stability computations are carried out as follows:

1-The reactances X_{d}^{\prime} and X_{q} are inserted at the respective buses of the
system, and we copute

$$
\begin{aligned}
& \stackrel{\circ}{\mathrm{E}}_{\mathrm{d} 2}^{\prime}=-0.00362, \delta_{2}=-2.76 \stackrel{\circ}{\mathrm{E}}_{\mathrm{q} 3}^{\prime}=1.03389, \stackrel{\circ}{\mathrm{E}}_{\mathrm{d} 3}=-0.01097, \delta_{3}=0.72^{\circ}
\end{aligned}
$$

2 - The equivalent impedances of the system loads are computed and inserted in the network. Then the system nodes, except the machines intemal nodes, are eliminated, and the system reduced third-order symmerric admittance matrix \mathbf{Y}, is determined as,

$$
\begin{aligned}
& \mathrm{Y}_{11}=0.30553 / .73 .04^{\circ} ; \mathrm{Y}_{12}=0.00113 / 93.64^{\circ} ; \mathrm{Y}_{13}=0.23709 / \angle 91.27^{0} \\
& \mathrm{Y}_{22}=0.11819 / .79 .52^{\circ} ; \mathrm{Y}_{23}=0.10514 / 90.85^{\circ} ; \mathrm{Y}_{33}=0.57099 /-58.93^{\circ}
\end{aligned}
$$

3 - Referring to the system matrix \mathbf{Y}, given in step 2, the system is decomposed (machine 3 is chosen as the comparison machine) into two "two-machine" subsystems. Then, selecting the following parameters

$$
\begin{aligned}
& \mathrm{M}_{1}=\mathrm{M}_{2}=0.20 \quad, \quad \mathrm{M}_{3}=14.0 \quad ; \quad \lambda=6.0 \\
& \varepsilon_{11}=0.60, \varepsilon_{21}=0.44 ; \varepsilon_{\mathrm{i}}=0.001, \mathrm{i}=1,2 ; \\
& \mathrm{h}_{12}=1.0 \quad, \mathrm{i}=1,2 \quad ; \mathrm{h}_{33}=300, \mathrm{~h}_{55}^{1}=150 ; \mathrm{h}^{2} 33=200, \\
& \mathrm{~h}_{55}^{2}=40 \quad ; \quad \mathrm{K}_{1}=0.45, \quad \mathrm{~K}_{2}=0.15
\end{aligned}
$$

and using expression (33), we compute the matrix

which is a stable matrix and satisfies conditions (30). This implies asymptotic stability of the system equilibrium. Then, according to theorem 4 of Reference 23 , and referring to the Appendix in Reference 16, we compute

$$
\begin{equation*}
E_{1}=\left\{\mathrm{X}:\left(\mathrm{V}_{1}\left(\mathrm{X}_{1}\right)+1.5 \mathrm{~V}_{2}\left(\mathrm{X}_{2}\right)\right) \leq 4.6801 .25\right\} \tag{34}
\end{equation*}
$$

as an estimate of the system asymptotic stability domain.
4. As an application of the developed approach to practical stability studies of the considered system, it is assumed that a 3-phase short circuit fault . with successful reclosure. occurred near bus 4. at 5% of the distance between the buses 1 and 4 . The fault is cleared, by switching off the faulted line, after 0.24 second from the fault instant. Considering the fault and fault-clearing conditions, the system equations (see eqn. 1), are solved. For each time interval the Lyapunov function, given by eqn. 26 , is computed for each subsystem . Substituting the two computed Lyapumov functions into eqn. 34 , it is found that this equation is satisfied ($V_{1}=4.63527$, and $V_{2}=0.00395$, are computed) at 0.450 second from the fault-clearing instant.
Fig. 3, shows variations of the six state variables (the time is measured from the instant at which the open line is reclosed) of the first subsystem, which includes the machines 1 and 3 .
It is obvious, referring to Fig. 3 , that the system will regain its prefault (normal) condition after reclosing (the fault is disappeared) the fautted line.

Fig. (3) States of the first subsystem against time after reclosing the open (faultod) line.

6 Conclusions

A transient stability approach is developed, in the paper, for multi machine power systems considering the 2 -axis generator model instead of the one-axis model, or the classical model, which are usually considered for transient stability studiess using the direct methods. Thus each generator is described by a fourth-order dynamic model.

The approach developed is applied to a 3-machine, 4-bus power system, and an estimate for the system asymptotic stability domain is determined. A 3-phase short circuit fault ,with successful reclosure, is assumed to occurr near one of the system buses, and a reclosure time for the fauted line is determined such that the system can regain its prefault (normal) conditions. It is found that the stability approach developed is suitable and can be easily used for practical and on-line stability studies of multimachine power systems in which number of the machines may be more than three.

7 References

1- ANDERSON, P.M., and FOUAD, A .A.: 'Power system control and stability', (Book) Iowa State University Press. 1977

2- RIBBENS-PAVELLA, M., CALVAER, A., and GHEURY, J.:` Transient stability index for on-line evaluation', IEEE PES Winter Meeting, New York, Feb. 3-8, 1980
3. KUNDUR, F.: Evaluation of methods for studying power system stability', International Symps. on Power syst. Stability, AMES,IOWA,May 13-15,1985

4- KAKIMOTO, N., OHNOGI. Y.. MATSUDA. H.. and SHIBUYA. H.:" Transient stability analysis of large-scale power system by Lyapunov's direct method', IEEE Trans.,1984,PAS-103,No1, pp. 160-167

5- BELLMAN, R.:' Vector Lyapunov functions', SLAM J. Control \& Optimiz, 1962,No.1, pp. 32-34

6- PAI, M,A., and NARAYANA, C.L.:' Stability of large-scale power systems'. Proc. of 6th IFAC World Congress, Boston, 1975, pp. 1-10

7 - GRUJC, LJ.'T., and RIBBENS-PAVELLA, M.:' New approach to stability domain estimate of large-scale power systems', Revue E,1977,Vol.8.No.10, pp.241-249

8 - JOCIC, LJ.B., and RIBBENS-PAVELLA, M., and SIJIAK. D.D.:'
Multimachine power systems: stability, decomposition, and agoregation', IEEE Trans.,1978, AC-23, No:2, pp. 325-332

9- GRUITC, LJ.T., RIBBENS-FAVELLA, M., and BOUFFIOUX, A.:' Asymptotic stability of large-scale systems with application to power systems. Part 2: transient analysis', Int. J. Electr. Power Energy Syst., 1979 , Vol.1, No.3, pp. 158-165

10- ARAKI, M., METWALLY, M.M., and SIIJAK, D.D.: Generalized decompositions for transient stability analysis of multimachine power systems'. Proc. Joint Automatic Control Conf., Califomia, August,1980, pp. 1-7

11- MAHALANABIS, A.K., and SINGH, R.: On the analysis and improvement of the transient stability of multimachine power systems', IEEE Trans. 1981,PAS-100,No.4, pp. 1574-1579

12 - MICHEL, A.N., NAM, B.H., and VITTAL, V.:` Computer generated Lyapunov functions for interconnec- ted systems: improved results with applications to power systems', IEEE Trans.,1984,CAS-31.No.2,pp. 189-198

13 - SHAABAN, H.. and GRUJIC, IJ.: An improved pair-wise decomposition aggregation approach to stability annalysis of multimachine power systems', R.A.I.R.O. Automatique/Systems Analysis and Control,1984,Vol.18,No.1, pp. 63-77

14 - SHAABAN, H., and GRUJC, UJ.: Transient stability analysis of power systems via aggregation on subsets'. Int.J.Control,1994,Vol.59,No.6,pp.1401-1419
15- SHAABAN, H., and GRUJIC, LJ.:' Transient stability anatysis of large-scale power systems with speed governor via vector Lyapunov functions'. Proc. IEE, Vol. 132,pt.D,No.2,pp 45-52,1985.
16 - SHAABAN. H., and GRUIC, LJ.: Improvement of large-scale power systems decomposition-aggregation approach', Int. J. Electr. Power Energy Syst. Vol .8,No.4,pp 211-220, 1986.

$$
\therefore 11-
$$

17. SHAABAN, H:: New decomposition-aggregation approach applied to power system with speed governor', IEE-Proc.-C,1991,Vol. 138,No.5,pp. 434-444

18- GRUIIC, LJ.; and SHAABAN, H.:' On transient stability anatysis of large-scale power systems', Computing and Computers for Control systems, J.C. Baltzer AG,Scientific Publishing Co. IMACS,1988,pp.249-254

19 - XUE. Y.. VAN CUTSEM. TH.. and RIBBENS-PAVELLA, M.: A new decomposition method and direct criterion for transient stability assessment of large-scale electric power systems'. IMACS Symp. Modeling and Simulation for Control of Lumped and Distributed Farameter Systems,Lille,France,3rd-6th June, 1986

20 - KAKIMOTO, N., OHSAWA, Y., and HAYASHI, M.:` Transient stability analysis of multimachine power systems with field flux decays via Lyapunov's direct method', EEE Trans.,1980,FAS-99.No.5, pp. 1819-1827

21 - PAI. M.A.:" Power system stability analysis by the direct method of Lyapunov', (Book),North-Holland publishing Co., 1981

22 - BERGEN, A.R., HILL, D.J., and DE MARCOT, C.L.:' Lyapunov function tor multimachine power systems with generator flux decay and voltage dependent loads'. Int. J. Elect. Power Energy Syst.,1986, pp.2-10

23 - GRUJIC, LJ., and RIBBENS-PAVELLA, M.: Asymptotic stability of largescale systems with application to power systems. Part 1 : domain estimation'. Int. J. Elect. Power Energy Syst.,1979.1, pp. 151-157

Nomenclature

$\mathrm{P}_{\mathrm{mi}}=$ mechanical power delivered to th machine
$\mathrm{P}_{\mathrm{ei}}=$ electrical power delivered by ith machine
$\delta_{i}=$ rotor angle, or position of the rotor q-axis from the reference
$X_{d i}, X_{q i}=$ direct-axis,quadrature-axis synchronous reactances
$X_{d i}^{\prime}, X_{q i}^{\prime}=d$-axis, q-axis transient reactances
$\mathrm{E}_{\mathrm{fd}}=$ exciter voltage referred to the armature circuit
$E_{i}^{\prime}=$ voltage behind d-axis transient reactance
$E_{d i}^{\prime}, E_{q i}^{\prime}=\mathrm{d}$-axis, q-axis components of the voltage $\mathrm{E}_{\mathrm{i}}^{\prime}$
$\mathrm{E}_{\mathrm{Q}}=$ armature emf corresponding to the field current
$\stackrel{\circ}{\mathrm{E}}_{\mathrm{fdi}},{\stackrel{\circ}{\mathrm{E}^{\prime}}}_{\mathrm{qi}}, \mathrm{O}_{\mathrm{E}}^{\prime} \mathrm{di}=$ pre-transient(or steady-state) values of the voltages $\mathrm{E}_{\mathrm{fdi}}, \mathrm{E}_{\mathrm{qi}}^{\prime}$ and
E_{di}, respectively
$\omega_{\mathrm{i}}=$ rotor speed with respect to the synchronous speed
$\mathrm{Y}_{\mathrm{ij}}=\mathrm{Y}_{\mathrm{ji}}=$ modulus of transfer admittance between internal nodes of ith and jth generators
$\theta_{\mathrm{ij}}=\theta_{\mathrm{ji}}=$ phase angle of transfer admittance Y_{ij}
$\mathrm{D}_{\mathrm{i}}=$ mechanical damping
$\lambda_{\mathrm{i}}=\left(\mathrm{D}_{\mathrm{i}} / \mathrm{M}_{\mathrm{i}}\right)=$ mechanical damping coefficient
$\delta_{i \mathrm{i}}=\delta_{\mathrm{i}}-\delta_{\mathrm{j}}=\delta_{\mathrm{iN}}-\delta_{\mathrm{jN}}$
$\sigma_{i j}=\delta_{i j}-\delta_{i j}^{0}=\sigma_{i N}-\sigma_{j N} \quad . \quad \sigma_{k N}=\delta_{k N}-\delta_{k N} \quad, k=i, j$

$G_{i j}=Y_{i j} \cos \theta_{i j}=$ transfer conductance
$\mathrm{B}_{\mathrm{ij}}=\mathrm{Y}_{\mathrm{ij}} \sin \theta_{\mathrm{ij}}=$ transfer susceptance
$\mathrm{T}^{+}{ }^{\prime}{ }^{2}=$ direct-axis transient open-circuit time constant of th generator
$\mathrm{T}^{\prime}{ }_{\text {qi }}=$ quadrature-axis transient open-circuit time constant of th generator
$\mathrm{R}_{\mathrm{j}}=\left(\mathrm{X}_{\mathrm{dj}}-\mathrm{X}_{\mathrm{dj}}^{\prime}\right) / \mathrm{T}_{\mathrm{doj}} \quad ; \mathrm{L}_{\mathrm{j}}=\left(\mathrm{X}_{\mathrm{qj}}-\mathrm{X}_{\mathrm{qj}}\right) / \mathrm{T}_{\mathrm{q} 0 \mathrm{j}}^{\prime} \quad, \mathrm{j}=\mathrm{i}, \mathrm{N}$
$\mathrm{Z}_{2}, \mathrm{Z}_{3}=$ two functions, defined as follows:
$Z_{2}(\alpha, \phi)=\min \{\sqrt{2} \max (|\alpha|,|\phi|) ;(|\alpha|+|\phi|)\}$
$Z_{3}(\alpha, \phi, \mu)=\min \{2 \max (|\alpha|,|\phi|,|\mu|) ;(|\alpha|+|\phi|+|\mu|)$

$$
; z_{2}\left[z_{2}(\alpha, \phi), \mu\right] ; z_{2}\left[z_{2}(\phi, \mu), \alpha\right]
$$

$\left.; z_{2}\left[Z_{2}(\mu, \alpha), \phi\right]\right\}$

8 APPENDIX: Definition of the elements of the matrix R_{F}

Elements of the sixth-order symmetric matrix R_{I} (see eqn.33), are defined as follows:

$$
\begin{aligned}
& \mathrm{rl}_{11}=2 \mathrm{~h}_{12}\left\{\mathrm{~A}_{\text {in }} \mathrm{Y}_{\text {iN }}\left[\left(1 / \mathrm{M}_{\mathrm{i}}\right) \varepsilon_{\mathrm{I} 1}+\left(1 / \mathrm{M}_{\mathrm{N}}\right) \varepsilon_{\mathrm{I} 3}\right]-1\left[\left(1 / \mathrm{M}_{\mathrm{i}}\right)-\left(1 / \mathrm{M}_{\mathrm{N}}\right)\right] \mathrm{A}^{*}{ }_{\mathrm{iN}}\right. \\
& \left.\mathrm{G}_{\mathrm{N}}\left|\xi_{\mathrm{I} 2}-\left[\left(1 / \mathrm{M}_{\mathrm{j}}\right)+\left(1 / \mathrm{M}_{\mathrm{N}}\right)\right]\right| \mathrm{A}^{*}{ }_{\mathrm{iN}} \mid \mathrm{B}_{\mathrm{iN}} \eta_{\mathrm{i}}-\left(1 / \mathrm{M}_{\mathrm{i}}\right) \sum \mathrm{Y}_{\mathrm{ij}} 1 \mathrm{~A}_{\mathrm{ij}}{ }^{1} 1 \xi_{\mathrm{ij}}^{*}\right\} \\
& { }_{\mathrm{I}_{12}}=-\mathrm{h}_{22}\left\{\left|\left(1 / \mathrm{M}_{\mathrm{i}}\right)\left[\mathrm{A}_{\mathrm{iN}}^{*}-1 \mathrm{~A}_{\mathrm{iN}}^{*} \mathrm{I}\right]-\left(1 / \mathrm{M}_{\mathrm{N}}\right) \mathrm{A}_{\mathrm{iN}}^{*}\right|\left|\mathrm{G}_{\mathrm{NN}}\right| \xi_{\mathrm{I} 2}+\left[\left(1 / \mathrm{M}_{\mathrm{i}}\right)+\right.\right. \\
& \left.+\left(1 / M_{N}\right)\right]!A^{*}{ }_{i N}\left\{B_{i N} \eta_{i}+\left(1 / M_{i}\right) \sum Y_{i j}\left[A_{i j} \xi_{i j}+1 A_{i j}^{*} 1 \xi_{i j}^{*}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left(1 / M_{i}\right) h_{12}^{I_{12}} \Sigma Y_{i j}{ }_{E_{j}^{\prime}}^{\prime}+K_{i} h^{\mathrm{I}_{33}} \quad \Sigma Y_{i j}{ }^{\circ} E_{q j}^{\prime} \xi^{*}{ }_{i j}\right] \\
& \mathrm{I}_{14}=-\left[\operatorname { m a x } \left\{\mathrm{L}_{\mathrm{i}} \mathrm{~h}_{44}\left[\mathrm{Y}_{\mathrm{iN}}{ }^{\circ}{ }^{\circ}{ }_{\mathrm{qN}} \xi_{\mathrm{II}}+{ }_{\mathrm{E}}^{\mathrm{E}} \mathrm{dN} \mathrm{G}_{\mathrm{NN}} \xi_{\mathrm{I} 2}+\sum \mathrm{Y}_{\mathrm{ij}} \mathrm{E}_{\mathrm{qi}}^{\prime} \xi_{\mathrm{ij}}\right] ;\left(1 / \mathrm{M}_{\mathrm{i}}\right)\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left(1 / M_{N}\right) h_{12}^{I_{12}} \Sigma Y_{N j}{ }_{E_{j}^{\prime}}^{\circ}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left(1 / M_{N}\right) h_{12}{ }^{\prime} \Sigma Y_{N j}{ }_{E_{j}^{\prime}}\right] \\
& \mathrm{r}_{22}=2 \mathrm{~K}_{\mathrm{I}} \mathrm{~h}_{12}
\end{aligned}
$$

$$
\begin{aligned}
& r_{24}=-h_{22}\left[\left(1 / M_{i}\right) G_{i i} I E_{d i}^{\prime} 1+A_{I}+C_{i} \stackrel{\circ}{E_{N}^{\prime}} Y_{i N}+\left(1 / M_{i}\right) \sum Y_{i j} \stackrel{\circ}{0}_{j}^{\prime}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{r}_{34}=\mathrm{I}_{36}=0 \quad ; \quad \mathrm{I}_{35}=\mathrm{I}_{36}=\mathrm{I}_{45}=\mathrm{I}_{46}=\mathrm{C}_{\mathrm{i}}^{*} \mathrm{Y}_{\mathrm{iN}} \\
& \mathrm{r}_{33}=2\left(1 / \mathrm{T}_{\mathrm{d} 0 \mathrm{i}}^{\prime}\right)\left[1-\left(\mathrm{X}_{\mathrm{di}}-\mathrm{X}_{\mathrm{di}}\right) \mathrm{B}_{\mathrm{ii}}\right] \mathrm{h}_{33} \mathrm{I}^{\prime}
\end{aligned}
$$

$$
\begin{align*}
& \mathrm{r}_{44}^{\mathrm{I}_{44}}=2\left(1 / \mathrm{T}_{q 0 i}^{\prime}\right)\left[1-\left(\mathrm{X}_{\mathrm{qi}}-\mathrm{X}_{\mathrm{qi}}^{\prime}\right) \mathrm{B}_{\mathrm{ii}}\right]\left(\mathrm{K}_{\mathrm{i}} / \mathrm{L}_{\mathrm{i}}\right) \mathrm{h}_{33} \mathrm{I}_{3} \\
& \mathrm{I}_{55}=2\left(1 / \mathrm{T}_{d 0 N}\right)\left[1-\left(\mathrm{X}_{\mathrm{dN}}-\mathrm{X}_{d N}^{\prime}\right) \mathrm{B}_{N N}\right] \mathrm{h}_{55} \\
& \mathrm{r}_{66}^{\mathrm{I}}=2\left(1 / \mathrm{T}_{q 0 N}^{\prime}\right)\left[1-\left(\mathrm{X}_{\mathrm{qN}}-\mathrm{X}_{\mathrm{qN}}^{\prime}\right) \mathrm{B}_{\mathrm{NN}}\right]\left(\mathrm{K}_{\mathrm{N}} / \mathrm{L}_{\mathrm{N}}\right) \mathrm{h}_{55}^{\mathrm{I}_{5}} \tag{35}
\end{align*}
$$

It is to be noted that Σ, is defined as Σ, and the following constants are given $\mathrm{j} \neq \mathrm{i}$

$$
\begin{aligned}
& \mathrm{h}_{22}=\left\{\left(1+\mathrm{K}_{\mathrm{I}}\right) / \lambda\right\} \mathrm{h}_{12} \quad, \quad \mathrm{~h}_{44}^{\mathrm{I}}=\left(\mathrm{K}_{\mathrm{i}} / \mathrm{L}_{\mathrm{i}}\right) \mathrm{h}_{33}^{\mathrm{I}}, \\
& \mathrm{~h}_{66}=\left(\mathrm{K}_{\mathrm{N}} / \mathrm{L}_{\mathrm{N}}\right) \mathrm{h}_{55}^{\mathrm{I}}
\end{aligned}
$$

where, $\mathrm{K}_{\mathrm{I}}, \mathrm{h}_{12} \mathrm{I}_{12}, \mathrm{~h}_{33}$ and h_{55}, are arbitrary positive constants.
In eau. 35, the elements C_{i} and $\mathrm{C}_{\mathrm{i}}^{*}$ are defined as

$$
\begin{aligned}
& C_{i}=\sqrt{\left(1 / M_{i}\right)^{2}+\left(1 / M_{N}\right)^{2}-2\left(1 / M_{i}\right)\left(1 / M_{N}\right) \cos 2 \theta_{i N}} \\
& C_{i}^{*}=\sqrt{\left(K_{i} h_{33}{ }^{\prime}\right)^{2}+\left(K_{N} N_{55}{ }^{5}\right)^{2}-2 K_{i} K_{N} h_{33} h_{55} \cos 2 \theta_{i N}}
\end{aligned}
$$

and Λ_{I}, is magnitude of the maximal eigenvalue of the fouth-order symmetric matrix Q_{i}, whose elements are given as

Definition of the elements $Z_{I}{ }_{I}$ and Z_{I}
The elements Z_{I}^{*} and Z_{I}. given in eqn. 33 , are defined as follows:

$$
\mathrm{Z}_{\mathrm{I}}^{*}=\mathrm{Z}_{3}\left[\mathrm { z } _ { 2 } (\mathrm { h } _ { 1 2 } ; \mathrm { h } _ { 2 2 }) \left\{\max \left[\left(1 / \mathrm{M}_{\mathrm{i}}\right) \mathrm{Y}_{\mathrm{ij}} \mathrm{~A}_{\mathrm{ij}} \xi_{\mathrm{ij}} ;\left(1 / \mathrm{M}_{\mathrm{N}}\right) \mathrm{Y}_{\mathrm{Nj}} \mathrm{~A}_{\mathrm{jN}} \xi_{\mathrm{Nj}}\right]+\right.\right.
$$

$$
\left.+\left(1 / M_{i}\right) Y_{i j 1} 1 A_{i j}^{*} \mid \xi_{0}^{*}{ }_{i j}+\left(1 / M_{N}\right) Y_{N j} 1 A^{*}{ }_{j}{ }^{1} \xi^{*}{ }_{N j}\right\} ;
$$

$$
\left.; \mathrm{K}_{\mathrm{N}} \mathrm{~h}_{55} \mathrm{Y}_{\mathrm{Nj}} \mathrm{z}_{2}\left\{\left[\mathrm{E}_{\mathrm{dj}}^{\prime} \xi_{\mathrm{Nj}}+\mathrm{E}^{\prime}{ }_{\mathrm{qj}} \xi^{*}{ }_{\mathrm{Nj}}\right] ;\left[\mathrm{E}_{\mathrm{qj}}^{\prime} \xi_{\mathrm{Nj}}+\left|E_{d j}^{\prime}\right| \xi^{*}{ }_{\mathrm{Nj}}\right]\right\}\right]
$$

$$
\mathrm{Z}_{\mathrm{I}}=\mathrm{Z}_{3}\left[\mathrm { Z } _ { 2 } (\mathrm { h } _ { 1 2 } ; \mathrm { h } _ { 2 2 } ^ { \mathrm { I } }) \left\{\left(1 \mathrm{M}_{\mathrm{i}}\right) \mathrm{Y}_{\mathrm{ij}} \mathrm{E}_{\mathrm{i}}^{\prime}+\left(1 / \mathrm{M}_{\mathrm{N}}\right) \mathrm{Y}_{\mathrm{Nj}} \mathrm{E}_{\mathrm{N}}+\mathrm{Z}_{2}\left[\left(1 \mathrm{M}_{\mathrm{j}}\right) Y_{\mathrm{ij}} ;\right.\right.\right.
$$

$$
\begin{equation*}
\left.\left.\left.;\left(1 / M_{N}\right) \mathrm{Y}_{\mathrm{Nj}}\right]\right\} ; \sqrt{2} \mathrm{~K}_{\mathrm{i}} \mathrm{~h}_{33} \mathrm{Y}_{\mathrm{ij}} ; \sqrt{2} \mathrm{~K}_{\mathrm{N}} \mathrm{hr}_{55} \mathrm{Y}_{\mathrm{Nj}}\right] \tag{37}
\end{equation*}
$$

$$
\begin{align*}
& \mathbf{q}^{\mathrm{i}}{ }_{11}=\mathbf{q}^{\mathrm{i}}{ }_{22}=-\left(1 / \mathrm{M}_{\mathrm{i}}\right) \mathrm{G}_{\mathrm{ii}} ; \mathrm{q}^{\mathrm{i}}{ }_{33}=\mathbf{q}_{44}^{\mathrm{i}}=\left(1 / \mathrm{M}_{\mathrm{N}}\right) \mathrm{G}_{\mathrm{NN}} \\
& q^{\mathbf{i}}{ }_{13}=q^{\mathbf{i}}{ }_{14}=q^{1}{ }_{23}=q^{i}{ }_{24}=0.5 \mathrm{C}_{\mathbf{i}} \mathrm{Y}_{\mathrm{iN}} ; \mathrm{q}^{\mathrm{i}}{ }_{12}=\mathrm{q}^{\mathbf{i}}{ }_{34}=0 \tag{36}
\end{align*}
$$

$$
\begin{aligned}
& \text { " تحليل اتزان ليابونوف لائظمة القوى كبيرة المقيــــــاس }
\end{aligned}
$$

- الغرض من هذا البحث هو انجاز تحليل الأتزان الأنتقالى لنظام قوى ، يحتوى على

 مركبتى الجهد بأنها تتغير مع الزمن • ونللك بدلا من أفتراف أن مقياس الجهل يكون
 مقياس الجهن أو أستخدام المحور الواحد يفترض عادة عند اجراء تحليل الاتزان لانئطمة القوى باستخدام الطرق المبأشــرة : وذللك للسهوله الـو

 للنظام • تم فك النظام الرياضى الى عدد (نـا () تحت نظام
 - مولــد دليـــلـ

ـ لكل تحت نظام تم افتراض داله ليابونوف وهى تتكون نن صوره مربعة + مجمـــــــوع تكاملات ثلاثه دوال غير خطيه • هذة الدوال تم استخداميا لتكوين هتجه دالــــــــــــــهـ

 حسابات الائزان • ثم تحديد زمن لأرجاع الخط، الذى تم فصله لـعزل منطــــــــــــهـ حـوث الخطأ، المغصول بحيث يستطيع النظام الـوونه الى نفس خالته قبل حــــــو - الخطـــأ
 اللدراسات الـعمليه لانْظمه النقوى والتى تحتوى على عدد من المولـــدات

[^0]: MANISCRIPT RECEIVED FROM DR RXSIXAABAN AT: $8 / 1 / / 1995$. ACCEPTED AT: 24/12/1995, PP 1 - 15 . ENGINEERING RESEARCFI BULLLETIN, VOL, 19, NO. 1, 1996 MENOUFTYA TNXVEISITY, FACULTY OF EVGINEERING, SHEBIEN EL-KOM, EGYPT, ISSN H110-1180

