ALGORITHMIC APPROACH FOR THE FOURIER ANALYSIS WITH APPLICATION TO THE ANNUAL SMOOTHED SUNSPOT'S NUMBER FROM THE YEAR 1700.5 TO 2000.5
 M.A.Sharaf ${ }^{1}$ and M.A.Banajh ${ }^{2}$
 1/ Department of Astronomy, Faculty of Science, King Abdul Aziz
 University ,Jeddah ,Saudi Arabia
 2/ Deparment of Mathematics, Girls College of Education, Jeddah ,Saudi
 Arabia

Received: 1/11/2003

Abstract

In this paper, algorithmic approach for Fourier analysis of smoothed data is developed and applied to the annual sunspots number from the years 1700.5 to 2000.5 . The precision criteria of the representation is very satisfactory.

Introduction

A growing mass of evidence suggests that the solar activity affects our weather and long -term variations of the sun's energy output affects our climate. The literature on this subject covers a period of 300 years, and many distinguished scientists have contributed (see,e.g. the extraordinary number of articles on the site:httt://adsabs.harvard. edu). Moreover almost every large solarterrestrial symposium now includes at least one session on sun weather/climate investigations. On the other hand ,the basic measure of the solar activity is the number of the sunspots visible on the solar disk at any given time; the more spots ,the more active is the sun[3].

Now ,if the sunspots are a key factor, that is ,a good usable indicator of solar activity for sun-weather relationships ,an obvious

M. A. Sharaf and et ...

condition must be met before sunspot's number can be used to predict changes in weather and climate: The sunspots themselves must be predictable. In fact it is very important to have a full understanding of sunspot predictability for sun weather purposes.

In the present paper, we started the first phase towards sunspot predictability by developing algorithmic approach for Fourier analysis of smoothed data. As an application of the algorithm we considered the annual sunspot's number from the years 1700.5to 2000.5 . The precision criteria of the representation is very satisfactory

2. Basic Formulations

2.1. Harmonic Analysis of a Periodic Function

- Let it be required to find a sum

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{j=1}^{r} a_{j} \cos j x+\sum_{j=1}^{r} b_{j} \sin j x \tag{2.1}
\end{equation*}
$$

which furnishes the best possible representation of a function $u(x)$, given that $u(x)$ takes the values $u_{0}, u_{1}, \ldots, u_{m-1}$, when x takes the values $x_{0}, x_{1}, \ldots, x_{m-1}$ respectively. Finally, m being some number greater than $2 r$. The problem is to determine the $(2 r+1)$ constants a_{0}, a_{j} and $h_{j} ; j=1,2, \ldots, r$ so as to make the expression (2.1) takes , as nearly as possible, the m values $u_{0}, u_{1}, \ldots, u_{m-1}$ when x takes $x_{0}, x_{1}, \ldots, x_{m-1}$.To do so we shall make use of the method of least squares[1] and we get

$$
\begin{align*}
& \frac{1}{2} a_{0} \eta_{w l}+\sum_{j=1}^{r} a_{j} \eta_{l j}+\sum_{j=1}^{r} b_{j} \beta_{j l}=d_{l} ; l=0,1, \ldots, r, \\
& \frac{1}{2} a_{0} \beta_{0 q}+\sum_{j=1}^{r} a_{j} \beta_{q j}+\sum_{j=1}^{r} b_{j} \gamma_{q j}=c_{q} ; q=1,2, \ldots, r, \tag{2.2}
\end{align*}
$$

Alogorithmic Approach for the Fourier ...

where

$$
\begin{align*}
& \eta_{l j}=\eta_{j l}=\sum_{k=0}^{m-1} \cos l x_{k} \cos j x_{k} ; l=0,1, \ldots, r ; j=0,1, \ldots, r, \\
& \beta_{q l}=\sum_{k=0}^{m-1} \cos l x_{k} \sin q x_{k} ; l=0,1, \ldots, r ; q=1,2, \ldots, r, \\
& \gamma_{q t}=\gamma_{t q}=\sum_{k=0}^{m-1} \sin q x_{k} \sin t x_{k} ; q=1,2 \ldots, r ; t=1,2 \ldots, r, \\
& d_{l}=\sum_{k=0}^{m-1} u_{k} \cos l x_{k} ; l=0,1, \ldots, r, \tag{2.3}\\
& c_{q}=\sum_{k=0}^{m-1} u_{k} \sin q x_{k} ; q=1,2, \ldots, r .
\end{align*}
$$

Equations (2.3) are called the normal equations of the least squares method. These equations represent a set of linear equations in ($2 r+1$) unknowns a's and b 's coefficients and could be solved by any of the methods adopted for linear systems. However, the coefficient matrix of this set could be reduced to a diagonal one by certain choice of the arguments x_{k} and in this case the a 's and b 's are determined exactly and the problem is known as harmonic analysis.

- In the method of harmonic analysis ,the arguments x_{k} take the special values;

$$
\begin{equation*}
0, \frac{2 \pi}{m}, 2 . \frac{2 \pi}{m}, 3 \cdot \frac{2 \pi}{m}, \ldots,(m-1) \cdot \frac{2 \pi}{m} . \tag{2.4}
\end{equation*}
$$

For these values, the $\eta^{\prime} s, \beta^{\prime} s$ and γ^{\prime} s of Equations(2.3) become:
For $l=j \neq 0: \eta_{\mathrm{lj}}=\gamma_{l j}=\frac{1}{2} m ; \beta_{\mathrm{lj}}=0$.

M. A. Sharaf and et ...

For $l \neq j: \eta_{\mathrm{lj}}=\gamma_{\mathrm{lj}}=\beta_{l j}=0$.
Consequently the a^{\prime} s and b 's coefficients could then be computed exactly from

$$
\begin{align*}
& a_{j}=\frac{2}{m} \sum_{k=0}^{m-1} u_{k} \cos j \frac{2 \pi}{m} k ; j=0,1, \ldots, r, \tag{25}\\
& b_{q}=\frac{2}{m} \sum_{k=0}^{m-1} u_{k} \sin q \frac{2 \pi}{m} k ; q=1,2, \ldots, r .
\end{align*}
$$

2.2.Practical Computations of the a 's and b 's Coefficients

The a 's and b's coefficients of Equations (2.5) could be computed efficiently [4] from

$$
\begin{align*}
& a_{j}=\frac{2}{m}\left\{u_{0}+Q_{1, j} \cos \frac{2 \pi}{m} j-Q_{2 i}\right\} ; j=0,1, \ldots, \tag{26.1}\\
& b_{q}=\frac{2}{m} Q_{1 . g} \sin \frac{2 \pi}{m} q ; q=1,2 \ldots \zeta, \tag{2.6.2}
\end{align*}
$$

where, for any j the Q 's are computed recursively from

$$
Q_{k, j}=u_{k}+2 \cos x_{j} Q_{k+1, j}-Q_{k+2, j},
$$

by using the initial conditions $Q_{m, j}=Q_{m+1, j}=0$, starting with $k=m-1$ to compute successively $Q_{m-1, j}, Q_{m-2, j}, \ldots, Q_{1, j}$.

2.3.The Sum of the Squares of the Residuals

Alogorithmic Approach for the Fourier ...

The sum of the squares of the residuals is given as [4]:

$$
\begin{equation*}
\delta_{r}{ }^{2}=\sum_{i=0}^{m-1} u_{i}{ }^{2}-\frac{m}{2}\left[\frac{a_{0}{ }^{2}}{2}+\sum_{j=1}^{r}\left(a_{j}{ }^{2}+b_{j}{ }^{2}\right)\right] . \tag{2.7}
\end{equation*}
$$

In practice ,since we do not know r, we would evaluate a ' s and b 's coefficients for $r=1,2, \ldots$, then compute $\delta_{r}{ }^{2}$, and continue as long as $\delta_{r}{ }^{2}$ decreases significantly with increasing r.

2.4.Data Smoothing

A series of raw data $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ is sometimes transformed to a new series of data before it is analyzed. The purpose of this transformation is to smooth out local fluctuations in the raw data, so the transformation is called data smoothing or smoother[2] .One common type of smoother employs a linear transformation and called a linear filter. A linear filter with weights $\left\{c_{0}, c_{1}, \ldots, c_{p-1}\right\}$ transforms the given data to weighted averages $\sum_{j=0}^{p-1} c_{j} y_{t-j}$ for $t=p, p+1, \ldots, n$. Notice that the new data set has length n - $p+1$.If $\sum_{j=0}^{p-1} c_{j}=1$ the linear filter is called an p-term moving average. If all weights are equal and they sum to unity ,the linear filter is called a simple moving average.

3.Numerical Applications

3.1.Data

- The used data are listed in the first two columns (and the forth, fifth columns) of Table I as the year and the corresponding annual sunspot's number respectively. These data are obtained from the site :http://sidc.oma.be. in the sunspot archive.

M. A. Sharaf and et ...

-The third column(and the sixth column) represents the smoothed sunspot's number obtained using a simple 2-term ($p=2$) moving average of Subsection 2.4.

3.2.The a's and b's coefficients

-Using the smoothed sunspot's number ,the a's and b's coefficients of Equations (2.5) are computed in a recursive manner from Equations (2.6).
-The number of terms r is computed by the artifice mentioned after Equation (2.7) and in this respective we find $\mathrm{r}=150$. Table A, gives the values of $\delta_{r}{ }^{2}$ (N.S.) for none smoothed and $\delta_{r}{ }^{2}$ (S.) for smoothed sunspot's number for different values of r .

Table A: Values of δ^{2} (N.S.) for None Smoothed and $\delta_{r}{ }^{2}$ (S.) for Smoothed sunspot's Number for Different Values of r

r	$\delta_{r}{ }^{2}(\mathrm{~N} . \mathrm{S})$.	$\delta_{r}{ }^{2}(\mathrm{~S})$.
50	34735.1	18895.6
100	8941.85	1514.4
150	4156.73	$4.65661 * 10^{-10}$

-The numerical values of the coefficients $a_{i} ; i=0,1,2, \ldots, 150$ and b_{j}; $j=1,2, \ldots, 150$ are listed in Table II.

3.3.Graphical Representations

Graphical representations of the sunspot's number for the years 1700.5 to 2000.5 are displayed in Figure 1 for both the observed smoothed variations and Fourier smoothed variations

Alogorithmic Approach for the Fourier ...

3.4.Error Analysis

Table III lists the absolute values of the residuals between the observed and the Fourier smoothed variations the of sunspot's number for the years 1700.5 to 2000.5

In concluding the present paper, algorithmic approach for Fourier analysis of smoothed data is developed and applied to the annual sunspot's number from the years 1700.5 to 2000.5 . The precision criteria of the representation are very satisfactory.

References

Babu,G.J and Feiglson ,E.D.:1996,Astrostatistics, The University Press,Cambridge, England.

Bevington,P.R.and Robinson,D.K.:1992,Data Reduction and Error Analysis for the Physical Sciences $2^{\text {nd }}$ edn.,McGraw-Hill, New York

Herman,J.R.and Goldberg.A.R.:1985,Sun,Weather and Climate,Dover Publications, Inc. New York.

Ralston,R.and Rabinowitz,P.:1978,A First Course in Numerical Analysis, McGraw-Hill Kogakusha ,Ltd .Tokyo, Japan
M. A. Sharaf and et ...

Table I (Continued)

Year	N. S.	S.	Year	N. S.	
1800.5	14.5	24.25	1850 \% 5	66.6	65.55
1801.5	34.	39.5	1851.5	64.5	59.3
1802.5	45.	44.05	1852.5	54.1	46.55
1803.5	43.1	45.3	1853.5	39.	29.8
1804.5	47.5	44.85	1854.5	20.6	13.65
1805.5	42.2	35.15	1855.5	6.7	5.5
1806.5	28.1	19.1	1856.5	4.3	13.5
1807.5	10.1	9.1	1857.5	22.7	38.75
1808.5	8.1	5.3	1858.5	54.8	74.3
1809.5	2.5	1.25	1859.5	93.8	94.8
1810.5	0.	0.7	1860.5	95.8	86.5
1811.5	1.4	3.2	186.5	77.2	68.15
1812.5	5.	8.6	1862.5	59.1	51.55
1813.5	12.2	13.05	1863.5	4.	45.5
1814.5	13.9	24.65	1864.5	47.	38.75
1815.5	35.4	40.6	1865.5	30.5	23.4
1816.5	45.8	43.4	1866.5	16.3	11.8
1817.5	41.	35.55	1867.5	7.3	22.45
1818.5	30.1	27.	1868.5	37.6	55.8
1819.5	23.9	19.75	1860.5	74.	106.5
1820.5	15.6	11.1	1870.5	139.	125.1
1821.5	6.6	5.3	1871.5	111.2	106.4
1822.5	4.	2.9	1872.5	102.6	83.9
1823.5	1.8	5.15	1873.5	66.2	55.45
1824.5	8.5	12.55	1874.5	44.7	30.85
1825.5	16.6	26.45	1875.5	17.	14.15
1826.5	36.3	42.95	1876.5	11.3	11.85
1827.5	49.6	56.9	1877.5	12.4	7.9
1828.5	64.2	65.6	1878.5	3.4	4.7
1829.5	67.	68.95	1879.5	6.	19.15
1830.5	70.9	59.35	1880.5	32.3	43.3
1831.5	47.8	37.65	1881.5	54.3	57.
1832.5	27.5	18.	1809.5	59.7	61.7
1833.5	8.5	10.85	1883.5	63.7	63.6
1834.5	13.2	35.05	1884.5	63.5	57.85
1835.5	56.9	89.2	1885.5	52.2	38.8
1836.5	121.5	129.9	1886.5	25.4	19.25
1837.5	138.3	120.75	1887.5	13.1	9.95
1838.5	103.2	94.45	1888.5	6.8	6.55
1839.5	85.7	75.15	1889.5	6.3	6.7
1840.5	64.6	50.65	1890.5	7.1	21.35
1841.5	36.7	30.45	1891.5	35.6	54.3
1842.5	24.2	17.45	1892.5	73.	79.05
1843.5	10.7	12.85	1893.5	85.1	81.55
1844.5	15.	27.55	1894.5	78.	71.
1845.5	40.1	50.8	1895.5	64.	52.9
1846.5	61.5	80.	1896.5	41.8	34.
1847.5	98.5	111.6	1897.5	26.2	26.45
1848.5	124.7	110.5	1898.5	26.7	19.4
1849.5	96.3	81.45	1899.5	12.1	10.8

M. A. Sharaf and et ...

Table I (Continued)

Year	N. S.	S.	Year	N. S.	S.
1900.5	9.5	6.1	1950*5	83.9	76.65
1901.5	2.7	3.85	1951.5	69.4	50.45
1902.5	5.	14.7	1952.5	34.5	22.7
1903.5	24.4	33.2	1953.5	13.9	9.15
1904.5	42.	52.75	1954.5	4.4	21.2
1905.5	63.5	58.65	1955.5	38.	89.85
1906.5	53.8	57.9	1956.5	141.7	165.95
1907.5	62.	55.25	1957.5	190.2	187.5
1908.5	48.5	46.2	1958.5	184.8	171.9
1909.5	43.9	31.25	1959.5	159.	135.65
1910.5	18.6	12.15	1960.5	112.3	83.1
1911.5	5.7	4.65	196.5	53.9	45.75
1912.5	3.6	2.5	1962.5	37.6	32.75
1913.5	1.4	5.5	1963.5	27.9	19.05
1914.5	9.6	28.5	1964.5	10.2	12.65
1915.5	47.4	52.25	1965.5	15.1	31.05
1916.5	57.1	80.5	1966.5	47.	70.35
1917.5	103.9	92.25	1967.5	93.7	99.8
1918.5	80.6	72.1	1968.5	105.9	105.7
1919.5	63.6	50.6	1969.5	105.5	105.
1920.5	37.6	31.85	1970.5	104.5	85.55
1921.5	26.1	20.15	1971.5	66.6	67.75
1922.5	14.2	10.	1972.5	68.9	53.45
1923.5	5.8	11.25	1973.5	38.	36.25
1924.5	16.7	30.5	1974.5	34.5	25.
1925.5	44.3	54.1	1975.5	15.5	14.05
1926.5	63.9	66.45	1976.5	12.6	20.05
1927.5	69.	73.4	1977.5	27.5	60.
1928.5	77.8	72.35	1978.5	92.5	123.95
1929.5	64.9	50.3	1979.5	155.4	155.
1930.5	35.7	28.45	1980.5	154.6	147.55
1931.5	21.2	16.15	1961.5	140.5	128.2
1932.5	11.1	8.4	1982.5	115.9	91.25
1933.5	5.7	7.2	1983.5	66.6	56.25
1934.5	8.7	22.4	1984.5	45.9	31.9
1935.5	36.1	57.9	1985.5	17.9	15.65
1936.5	79.7	97.05	1986.5	13.4	21.3
1937.5	114.4	112.	1987.5	29.2	64.7
1938.5	109.6	99.2	1988.5	100.2	128.9
1939.5	88.8	78.3	1989.5	157.6	150.1
1940.5	67.8	57.65	1990.5	142.6	144.15
1941.5	47.5	39.05	1991.5	145.7	120.
1942.5	30.6	23.45	1992.5	94.3	74.45
1943.5	16.3	12.95	1993.5	54.6	42.25
1944.5	9.6	21.4	1994.5	29.9	23.7
1945.5	33.2	62.9	1995.5	27.5	13.05
1946.5	92.6	122.1	1996.5	8.6	15.05
1947.5	151.6	143.95	1997.5	21.5	42.9
1948.5	136.3	135.5	1999.5	64.3	78.8
1949.5	134.7	109.3	1999.5	93.3	106.45
950.5	83.9	76.65	2000.5	119.6	115.3

M. A. Sharaf and et ...

Table II(Continued)

101	-0.508281	-0.349089	126	-0.35433	-0.36044
102	-0.401912	-0.0013635	127	-0.457765	-0.187245
103	-0.834038	-0.0969005	129	-0.291335	-0.104189
104	-0.154135	-0.443866	129	-0.547753	-0.0181787
105	-0.349221	0.0413715	130	-0.556252	0.215365
106	-0.520665	0.119467	131	-0.322019	0.0834856
107	-0.709318	0.10458	132	-0.303247	-0.0230149
108	-0.450959	-0.763333	133	-0.364192	-0.163719
109	-0.577919	-0.267945	134	-0.389196	-0.183305
110	-0.265949	-0.0917259	135	-0.266341	-0.0113574
111	-0.597018	0.0206636	136	-0.370835	0.0156732
112	-0.396892	-0.178887	137	-0.310693	0.0692979
113	-0.450467	0.0737386	138	-0.367719	-0.069298
114	-0.176808	-0.042315	139	-0.263107	0.0355537
115	-0.244805	-0.294876	140	-0.302629	-0.0295513
116	-0.395102	-0.194543	141	-0.44491	0.0294662
117	-0.490492	-0.151253	142	-0.284169	0.0386647
118	-0.407908	-0.0678801	143	-0.322551	-0.0393769
119	-0.229341	-0.140918	144	-0.287019	-0.048477
120	-0.403882	0.000691037	145	-0.360409	-0.0371023
121	-0.122404	-0.166315	146	-0.341793	0.00275942
122	-0.270846	-0.457441	147	-0.365547	-0.0324296
123	-0.394778	-0.170506	148	-0.372811	0.00803271
124	-0.441075	-0.101473	149	-0.342705	0.00563458
125	-0.381469	-0.322042	150	-0.352393	-0.00225757

Figure I : Graphical Repnesentations of the Sun Spot Muber for the Years 1700.5 to 2000 . 5

Cbserved Smoothed Variations
Calculated Variations frem
Fourier Series

 Smoothed (C) Vexiations in the Sun Spots muber for the Yeara 1700 . 5 (15) 2000.5

rear	0	C	$10-C /$
1700.5	8.	8.	1.13687×10^{-13}
1715.5	37.	37.	1.42109×10^{-14}
1730.5	41.	41.	4.9738×10^{-14}
1745.5	16.5	16.5	7.10543×10^{-14}
1760.5	74.4	74.4	1.2789×10^{-13}
1775.5	13.4	13.4	7.63833×10^{-14}
1790.5	78.25	78.25	2.55795×10^{-13}
1805.5	35.15	35.15	7.10543×10^{-15}
1820.5	11.1	13.1	2.66454×10^{-14}
1835.5	89.2	89.2	5.82645×10^{-13}
1850.5	65.55	65.55	1.56319×10^{-13}
1865.5	23.4	23.4	4.94875×10^{-13}
1880.5	43.3	43.3	2.06057×10^{-13}
1895.5	52.9	12.9	1.08358×10^{-13}
1910.5	12.15	54.1	4.9739×10^{-13}
1925.5	54.1	57.65	7.95908×10^{-13}
1940.5	57.65	89.85	6.39488×10^{-13}
1955.5	89.85	85.55	4.12115×10^{-13}
1970.5	85.55	15.65	4.47642×10^{-13}
1985.5	15.65	115.3	4.68958×10^{-13}

M. A. Sharaf and et ...

خوارزمية لتحليل فورير مع تطبيق على العدد السنوي للبقع الشمسية من عام
 1700.5 2000.5

هصهد عادل شرف -' همنى عبد الله الحسين باناجه '

1- قسم العلوم الفلكية جامعة الملك عبد العزيز بجدة
r- قسه الرياضيات كلية التربية للبنات بجدة
المملكة العربية السعودية
ملخص البحث :

تم في هذا البحث تشيد خوارزمية لتحليل فورير نبيانات ممهدة وطبق ذلك على العدد السنوي

