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ABSTRACT

4 general analytic metbodolo%y, based on the finite inteir
transform, which i3 capable o resolving diffusion proble
degcribed by nonlinear partial differential eguatxons accurate
and rag:dly_ has been introduced ﬁreviausly ¥y gseveral author
The method is extended in this work to_solve partial differenti.
eguat:ons with nonseparable and/or nonlinear boundary condition:
The analysis and merit of the proposed method is demonstrated

a heat diffusion problem of practical interest and the result
compared to the exact solution of the conventional fini
integral transform method.

INTRODUCTION

In the field of linear heat transfer, the transient he
diffusion equation is linearized by considering the thera
properties to be independent of temperature; furthermore, t

boundary conditions are alse taken to be linear. This clasas
linear, trangsient heat diffusion has been treated in detai
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[1,2). However, when the thermophysical properties [3~8] and/or
the volumetric heat source [1,7] become temperature dependent,
the field egquation becomes noanlinear and the msolutionm can not be
obtained by any of the elegant methods presented in [1,2,8]. In
addition, 1if the temperalLure level becomes high, radiation
andfor change of phase may occur, and, as a result, the boundary
conditionas become nonlinear [9,10]. The transition from a linear
to a nonlinear model introduces additional mathematical and
computational difficulties which have to be dealt with. As it
appears, solving nonlinear problems analytically is rare and
each nonlinear problem requires a special treatment.

The finite dintegral transform method is one standard method
used in solving heat and maas diffusion problems. Ozisik [1],
Luikov [11] and Mikhailov and Ozisik [12] have demonstrated the
usefulness and effectiveness of the method in solving linear,
separable partial djfferential equatlons. Frankel and Vick [13]
have generslized the finite integral transform technique to the
solution of nonlinear diffusion equations having a temperature
dependent thermal conductivity. Frankel [14] has demonstrated the
accuracy of the method.

The current work introduces an analytic methodology baned on
the finite integral transform for soiving partial differential
equations with nonseparable and/or nonlinear boundary conditions.
The work is presented In two parts. This part, part I, focuaes on
the develvpment and merit of the methodology by solving a heat
difPusion’ problem the choice of which is two-fold. First, the
problem is one of practical importance from the engineering point
of view. Secondly, the problem is wmathematically described by a
differential equation subject to nonhomogeneous boundary condi-
tions for which separation of variables, though troublesome, can
be achieved. These mathematical characteristica help in demonst-
rating the effectivenese of the method as compared to the
conventional use of finite integral transform technique which
requires separation of variablen. In a suhsequent paper, part
IT, the melhod will be demonatrated on nonlinear nonseparable
problems as in heat diffusion with radiation interaction at the
boundaries.

PROBLEM DESCRIPTION

To introduce the method without undue complications, a one-
dimensionai transient heat diffusion in a alab of finite thick-
ness having a thin film on one face (at N=0) and insulated hack
surface is considered. This problem is discuassed hy the auther in
[15] and is mathematically described by a field equation and a
set of boundary conditions which can be written in dimensionlesn
form as follown
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L,y = Bonuny (1)
subject teo

g%(n,r) - B88(n,7) = rgg{n,r} H n=0, 7>0 (2a)

g%(n,r} =0 ; n=1, 730 {2b)
and

8(n, 1) = F(n); T=Q0, 0O<Cnct, {2¢)

Where N, 7, and 8 are the dimensionlesa spatial, time,
and field varjabhlen, respectively; B is Biot number, and T
is a heat capacity ratio defined by

{pcb][
(pecl) g {3)
with f and S refer to the film and the soiid, respectively,.

Solution to the above differential equation subject to the
given boundary and initial conditions ia developed in tbe
following sections wusing the conventional and the denerallzed
finite integral transform technigques.

FINITE INTEGRAL TRANSFORM: CONVENTIONAL (EXACT) SOLWTION

In the finite integral transform technique, the integral
tranaform pair needed for the sclution of a given problema jia
developed by considering representation of an arbitrary fumction
in terms of the eigenfunctionas corresponding to the given
eigenvalue problem. Obtaining the required eigenvalue problem may
he accomplished by considering the homogeneous part of the
nonhomogeneous field eguation and then employing separation of
variables to obtain the basis functions.

Employing separation of variablee on the boundary vajue
problem given by equationa (1) and (3) yields the following
eigenvalue problem

¥(n) + %) w(n) = o0, n=1,2,... (4)
subject to

w{n) = (8 - N\2) w(m); at m=0 (5a)

W (n) = 0; at n=1, {5b)
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The eigenvalues of this problem 18 determined from the following
tranacendental equation

A, ain(ln) - {8 - rl:) COB(XH} = 0. (6)

The eigenfunctlon corresponding to the n'® eigenvalue

)\, i=s given by
v {n} = %, com(r,n} + (B - T\}) ain(r,n). (7)

The orthogonallty property with respect to a welght function
¥(n} may be established as
[}

t " -{0| lI#n
Iaﬁin)wn(n) A (M)dn TLNIN), m=n (8)

L]
where N{), ) is the normalizatlon integral.The welght

function which satisfies the orthogonality relation is derived in
the appendix and is given by,

¥(n) = 1 + Is(n}, , (9)
vhere 8{7) is the Dirac delta-function.
The approprlate transform pair can now be defined aa [1],

INTEGRAL TRANSFORM

1
30w = [ mmemis(n,r) an (10a)
0
INVERSION FORMULA
— W O,
B(n,T) = > '@L(?:)" L (10b)

n=y

Following the atandard tranaformation procedures {1}, we reduce
equation (1), and the boundary and initial conditiona given by
equations {(2a-c) to a eyatem of first order ordinary differential
equations in the tranaform dimensionleas temperature, namely

dd—?-(1“,1) + X:@‘ln,‘l’} = 0, n=1,2,... (11)

asubject to the following transformed initial condition
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d(x,,0) = F(2,), n=1,2,... (12)
where F is the transformed initial distribution function.
The general solution toc the above system can be written aa
- -\Ir
P(x.,1) = P(X,).e n=1,2,... (13)

Equation {13} is an exact solution of the transformed dimension-
lees temperature. Finally, substituting this aoclution for the
transform into the inversion formula yields the solution for the
dimenaionless temperature.

FINITE INTEGRAL TRANSFORM: GENERALIZED METHOD

The solution given mbove wag lengthy and difficult because of the
necessity of findlng the weight function that satisfies the
orthogonality relation. Thls approach declines to lead Lo an
exact solution in cases where the boundary conditionas are
nonseparable or when the separation process can not be easily
performed. This is clearly seen by the case when radiatlon occursa
at a boundary in accordance to the fourth power law.

This paper auggents a method of =solution that takes full
advantage of the finite integral transform technique by overcom-
ing the obgtacle of obtaining a nonstandard welght functlon.The
time dependent term in the first boundary condition, equation
{2a), causes most of the difficulties that arise in tbe conven-
tional approach. Tresting thls term as a "source” and keeping
other conditions unchanged, then employing the mpethod of separa-
tion of variablea on the cbtained aspociated homogenecus prohlem
we obtain the following eigenvalue problem

v (n) + Al w(n} =0, (14)
subject to -

w(n} - B w(n) = o; n=0, (15a)

v(n) =0 : n=1, {15b}

for which the eigenvalues are defined by the {following transcen-
dental eguation -

B casX, — X, ainkx, = 0. n=1,2,... {16}
The eigenfunctions can be written as

w.(n) = X, coar,n + 8 sin),m, n=1,2,... (17)

P.5
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In this case the orthogonallty relatlon glven by equation (B) 1lsa
msatlafied for the above eigenfunction with a waelght function
equal unity. With this standard value of the weight functlom, the
tranasformation palr required for the solution takes the following
form;

INTEGRAL TRANSFORM

80,7 = | wmen,1) an, (18a)
INVERSION FORMULA
/
o W D,
8(n,7) = 'L‘"L(?:}" 1) {18b)

Thus the governing dimensionless equation and the associated
conditions ¢can be transformed to the following first order
ordinary differential equation

%$1kn,1) + liﬁ(xn,r) = - rmn(O}gs(o,r), n=1,2,... (19)

subject to the following transformed initial condition

$),,0) = I v, (w)8(n,0} dn, n=1,2,... (20)

e

Both the field variable and its transform appear in the system
given above. Thls difficulty can be reconciled by utillzing the
inversion formula into {19}.

Truncation of the set of ordinary differential equations
after some finite number of equations is performed and the
solution is obtained numerically. However, the numerical treat-
ment requires special care as the resulting system is atiff.
Moreover, increasing the number of eigenvalues, which is demired
to achieve better accuracy, increases the stiffness of the

system. Once the tranaformed dimensionless temperature d is
Jetermined, the dimenszionless -temperature, 8 can be reconatruc-
ted through the inversion formula.

RESULTS

A qualitative comparison of the two solutions is performed
at first for the limiting case where no film is present. In such
case,{ b ==0), the right-hand side of equation {19) equals
zero and the system of first order differential equationa of hoth
golutions are identical. Moreover, the transcendental and the
eigenfunctions expression of the two solutions hecose equivalent,

»
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i.e, the proposed method gives the exact solution at the limitiag
cagse when the film thichkness is set equal to zero.

Secondly, the two solutions are compared for valuea of the
heat capacity ratio, [ equnls 0, 0.01, 0.1 and 1 and values of
Biot number, ? equals 0.05, 0.1, and 1. Differences in dimen-
sionless temperature are evaluated at the front surface (n=0),
at the middle {(n=0.5), and at the back surface {n=1). Solutiona
of both methods were obtained using forty eigenvalues in all
caned. The selution of the generalized finite integral transform
methoed was computed by implementing an 1mplicit Runge-Eutta
method of the third order.

The dimenaionless temperature difference and the relative
error plots are provided for zamples of the results in Figura
{(1). The minor errors that appear are due to truncation and round
of f errora. Same results are displayed in tabular form at
selected values of time.

In all the cases considered, the difference in dimenaionless
temperature between the two solutionz was found to be lesa than
0.0003 at both the middle section and the hack surface.

At the front surface, however, the difference between the
two methods is related to the Biot number. For valuea of Blot
number equal to 0.05 and 0.1, the dlfference in dimensionlessa
temperature was found to be less than 0.00092 while the relative
error remained within the 1X margin. When the Biot number ia
equal 1.0, the difference between the two solutions at the front
surface incrensed, however, the maximum value of the dimension-
legs temperature difference remains within 0.007 with a relatlve
error within 1%X. It is alse noticed that the relatlve error is
nearly constant over the time domain at each section and the
difference in the dimensionless temperature is wmaximum for early
time (samall! Fourier number) and decays as the time increases.

CONCLUSION

The presented straightforward use of the finite integral
tranaform reduces the mathematical difficultiea which arise when
dilficult nonhomogeneous, separats boundary conditions are
encountered, The method yielded similar results as the true exact
analytic solution [or all conaidered cases. The application of
this method to nonlinear problems will be demonstrated in part
II of this study.



Dinensivadess Temperalure Diflerence

Dimensicnlass Teinpersiure Dillereace

P.8 Bishri Abdel-Hamid

0200 T r r T T

3.0040 T T T T T T T T
sam gk vl e gl w0
-_— ot w0 S — A x=35
0.00X ot emlD - kw0
ooozg{ 0% liTwloasl i agion 9% b [=L a=i 1
= {
9.00104 T - 4 g |
. . m
0.0000 <" { s O,OM-W-
- aoiad i Z R
A e - x k 1
-.00204 '~ e ] - 0100+ 4
- 0030 : § i
= J04] T —T T T T =02 ™™ T T T T T T
pnn 2% 0% 078 15 2% 150 175 200 000 0285 o&%C o7% 100 L2S 1.3 17% 200
Dimsens:oness Time Dimangioniess Time
Dimeangioriesy Temperglura Milarence between tha Relalive Error of Dimensionless Tampsrature
Evacl ana Gararglizea = ~ite Integrol Tronsform Obtainad from_the Exact and Gensralized Finits
Selution “Mathads Integral Transfrom Soluiion Wethods
ot : . — 0.0200 . , T . .
.1 T <= ol Wm0 — atxmd0 |
— ot ve=(3 J —t a3
B FLIK) ] “s Raelo ]
4
C.00809  coss 2 DmQ ). A= ooiga €29 3 T=d.l, A= ]
\ ‘6 4
0.0020+ 135
| e 2 00000 4
-~ ] . e renr 4 =] 7
- 00%0 3 k
L e - & )
il e -~ 01004 - |
—DOBO " e 1 ]
~0100 . . T . . -.9200 T T : - .
DLo 0.2% 05F ers M 125 1LED 175 200 Q.o o.s 0.50 7% 1490 L% 1% 173 200
Cimensio— e85 Tima Cimengioniess Tims
Dimansioriesa Tamperati-e Diffarance between the Pelative Error of Dimenmoniess Temperaturs
Exacl and Generalizes T ite Integral Trangform Dbtoined from Lhe Exaet and Generalizad Finita
Sclution “4ethads Inlegral Transiram Sclution Metheds
Fig.(1) Dimensionless Temperature Difference and
Relative Error Cbtained from Exact and

Generalized Solution Methods.



Mansoura Engineering Journal (MEJ) Vol, 15 No. 1. June [990)

[ - L Wl

WXyt A xE
--n.ﬂ'-\e —
am =?"
~ —r

GREAK SYMBOLS

L=

or
—

Ak
B="

$(

XasT)

&
"=

X

n

i

@{n,7)=

1]

=9l

z

L
v.(n)

r

T(x,t)-T.

NOMENCLATURE

Film thlcknesas

Specific heat

A subscript denotes fluid

Heat tranafer coefficient between the film
and the surrounding

Thermal conductivity of the alab
Thickness of a alab
Hormalization integral
Dimensional time variabla
Amhient temperature

Dimensional Temperature

A weight function

Space variable

A subscript referas to solids

Thermal diffusivity

Bict number

Transform of dlmension less temperature
Dimensionleas space variable

Eigenvalues

Dimensionless temperature of the surrounding
Dimensionleas temperature

Density of solid

Dimenaionleegs time

Eigenfunctions
Hent capacity ratio

DINENSIONLESS PARAMETERS

- 4
=y
L» §
==

B=11’f

0 T(x,t)-T,

To—Ta
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APPENRDIX
DERIVATION OF THE WEIGHT FUNCTION GIVEN BY EQUATION (9)

We atart by writing equation (5) for two different eigen-
values, say », and »,, then cross multiplying by V¢  and
v subtracting the results and rearranging to get

n?
v, (M-wty = [ we, - ww] . (A.1)}

Integrating over n, TME{0,n], and making use of the

boundary conditiong given by equation {3b), yields

(1:--»:)_[ v dn = W (0)w (0) - . (0) (0), (A.2)

Utilizing equation {(4) along with equation (Ja}, eguation (A.2)
can be further reduced teo

1
_[ bbdn = <P (A.3)

]
Asguming the following expresmsion for the weight functicen

w(n) = 1 + ¢{n}, {A.4)
where ¥(n} ia unknown functien of (T}, the orthogonality
relation given by (8) is then satiafied when

1
I [I4%{n)]d v, 6 dn = 0. (A.5)
L} - .

Noticing from equation (8} that %, = ¢ _(0} and %, = ¢ (0]},
we introduce (A.3) inte {A.5) to get

_[ @(n)w w dn = Tw_(0)w (0). (A.8)

Making wuse of the sifting properties of the Dirac delta-
function, we rewrite equation (A.6) as

1
1
I ¢(n)w v dn = J-Fb(n]w'(n)wn(n)dn. (A.T}
Q@ -
From (A.7} we observe that #(n) = T6(n) and the desired
weight funetion takes form
Wn) =1 + T&{n). (A.9)

Whieh is the function used in the analysis



