University of Mansoura
Faculty of Engineering
Dept. of Electronics & Communics.

3rd Year Electronics Time Allowed: 3 hrs.

Date: 13/6/2012

Optical Electronics

USE NEAT SKETCHES TO CLARIFY YOUR ANSWERS:

1) A- Explain the advantages of optical fiber communications.

B- State the main types of optical fibers and compare between them with respect to information carrying capacity.

- 2) A- Sketch the structure of optical fiber cable, state the function of each element. Give short account on SEA-ME-WE transcontinental cable.
 - B- Derive the conditions required to get guided modes in optical fiber and state the condition for single mode case.
 - C- Derive an expression for the total number of guided modes in optical fiber in terms of fiber parameters.
- 3) A- Define the attenuation in optical fiber and sketch the silica fiber attenuation curve α (λ) showing the three transmission windows and the All-Wave fiber region.
 - B- Explain the sources of extrinsic and intrinsic absorption in silica fiber and compare between them.
 - C- A manufacturer wishes to make a silica- core, step-index fiber with
 - V = 50 and numerical aperture 0.25 to be used at 1.55 μ m if $n_1 =$
 - 1.5. What should the core size and the cladding refractive index be?
- 4) A- Define signal dispersion in optical fiber and explain its effects on the information capacity of the fiber link.
 - B- State the sources of signal dispersion in optical fibers and explain how to minimize their effects in single mode and multimode fibers.
- 5) A- Explain the advantages of using ternary and quaternary símiconductor alloys used in optical sources.
 - B- Derive an expression for the threshold gain in laser diode.

6) A- Explain the main requirements of photo detectors used in optical communications.

B- Derive an expression for the quantum efficiency in PIN diode and explain the concept of cut-off wavelength in semiconductor photodetectors.

بالتونيعي . محردالزلباني

University of Mansoura
Faculty of Engineering
Dept. of Electronics & Communics.

3rd Year Electronics

Time Allowed: 3 hrs.

Date: 13/6/2012

Optical Electronics

تحلفات قرم

USE NEAT SKETCHES TO CLARIFY YOUR ANSWERS:

- 1) A- Explain the advantages of optical fiber communications.
 - B- State the main types of optical fibers and compare between them with respect to information carrying capacity.
- 2) A- Sketch the structure of optical fiber cable, state the function of each element. Give short account on SEA-ME-WE transcontinental cable.
 - B- Derive the conditions required to get guided modes in optical fiber and state the condition for single mode case.
 - C- Derive an expression for the total number of guided modes in optical fiber in terms of fiber parameters.
- 3) A- Define the attenuation in optical fiber and sketch the silica fiber attenuation curve α (λ) showing the three transmission windows and the All-Wave fiber region.
 - B- Explain the sources of extrinsic and intrinsic absorption in silica fiber and compare between them.
 - C- A manufacturer wishes to make a silica- core, step-index fiber with
 - V = 50 and numerical aperture 0.25 to be used at 1.55 μ m if $n_1 =$
 - 1.5. What should the core size and the cladding refractive index be?
- 4) A- Define signal dispersion in optical fiber and explain its effects on the information capacity of the fiber link.
 - B- State the sources of signal dispersion in optical fibers and explain how to minimize their effects in single mode and multimode fibers.

- 5 a) Explain the main performance requirements of fiber optic link and how they are met In F.O.L design.
 - b) For F.O.L of the following parameters,
- * transmitter has 100 µw and data rate 20 Mb/s
- * the fiber is multimode fiber of $\sim = 3$ dB/km Assuming a proper power margin, find the maximum repeaterless distance of the link if BER is 10^{-9} . use receiver sensitivity - 40 dBm.
- 6.a) A SONET $-48\,$ F.O.L, a laser diode has 3 mw optical power, 0.1 nm spectral width and 25 ps transimitter rise time. The single-mode fiber has 0.3 dB/km and 2 ps/km. nm. Find the power received at the end of 100 km long link.
 - b) For the optical link in a), suggest a proper photodetector and prove that the total system rise time is in the safe range of OC 48 channel.of receiver bandwidth 2.5 Ghz.

بالتونيم م