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 ABSTRACT

He dempanstrats the steady Coustte flow of warms
electron plasma of inhomogencous density and
subjected. to a2 weakly variable magnstic field
with the neglect of plasma waves under certain
The plaswa, obeying Diebye
approximation, behaves as an ideal gas in the ..
transition region. It is  shownn, using the
B.G.K. model of Boltzman &guation and the half -
polynomial expression technigques for the
electrons distribution funcition, that the
shear mopuntum is conserved. The flow, drift
antt slip velocities are compared. The bounadry
conditions are built in the presence of
.partial reflections from the wnalls.

conditions.
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1. Introduction:

The consideration of pioblems with boundary surfaces is still

of modest interest for the cése of a plasma; In leterature Ishedlo-
vskiy,1967l the case of Couette flow of fully‘ionized plasma in an
external electric field is presented. The method is based on
replacing the Boltzmann eguation by moment equations with the simu-

ltaneous introduction of a two-stream Maxwellian distribution funct-

ions. [Abdel~Gaid,1972| treated the problem of shear flow of a

rarefied gas consisting of charged particles moving in constant ele-
ctric and magnetic fields, taking imto account that the particles
arriving to the plates are reflected diffusly with complete energy
accommodation. In his thesis fMahmoud, 1985 [studied the case of a
rarefied chargeé gas in constant magnetic field with partial deffuse
reflection at ihe walls. An approximate solution_of'tge Boltzmann
eguatibn'of the modefied Lui-Lees type is found to yield simple

analytic expression for the flow and slip velocities.
The purpose of the present paper is twofold:

i) first, to present the formulation of the problem of Couette flow
of a rarefied electron plasma of inhomogeneous density and sub-
jected to a weak inhomogeneous external magnetic field on the
basis of the Debye Screening theory.
ii) Second,to apply an alternative method to derive the transport
prioper ties of the plasma flow.
It is better in the begining to write a list of symbols that

would be used in:the_text:‘ e
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g ;
the interparticle distance ~ n 3,

the coefficient of half range polynomial expansioﬁ,
nondimensional electron veloecity, »
speed of light,

Debye radius ,

plates separation,

electron charge ,

parameter of plasma nonideality = (D3n)~l,

Magnetic field.
Current density,

Boltzmann's constant , Kn - Knudsen number ,

Debye wave number, k --'wave number ,.
Shear Mach number,
Cyclotron Mach number, m - electron mass,

electrom number in Debye sphere,

electron density}

transverse plasma pressure.

Shear momentum |.

velocity component .

temperature.

‘transverse velocity = vi' + vy '
. 2KT
therma; velocity =/ m
drift velocity » x,y = transverse coordinates,

longitudinal coordinate,
inverse of v%;

effectiﬁe addiabatic coifficient,
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[ ~ degree of rarefaction

€ ~ reflection coefficient,

A - wavelength,

v - electron collission freguency

KK - relative gradients of magnetic field and electron density,
M -~ thermal viscosity coefficient,

iy -~ viscosity coefficient due to coulombd interaction,

c
- plasma frequency (= 4ﬂnez/m)%,

Q - cyclotron frequency = ;g .

II. The physical problem:

In our problem of stéady Covette flow the two infinite parallel
plates move im the xy plane apposite to each other in the x-direction
with velocities * W/2. The plates are impermeable, uncharged and
dielectriq. The spase between the plates is filled with a inhomogeneous
elect}on gas, under the influence of weak inhomogeneous external
-magnetic field. the whole system is supposgd under constant temperature.
Peviation from the concept of cold plasma in our work is esseﬁtial.
because completely cold electron stream will have only one value of

x-momentum for a given energy, but owing to the proposed shear moticn,

the electrons would still have a distribution of momentum in the

transverse x and y directions. This incorages one to introduce a
model of warm or Maxwellian electron gas. In order that the space

charqé_wave be desipated, the plasma oscillations become dispersive

|Marshall, 1985
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The phase velocity slows and approaches the thermal velocity Vo of

the electrons as k becomes large. A bound on the collective behavior

is set when k approaches kD or A < D, where D = vT/mp. In that

case the wave motion is damped.

On the other hand, to avoid quantum effects, the DeProuglie wavelength

associated with the electron thermal moticn must be related to the

Debye length by the strong ineguality

In our study} the plasma is supposed to be not so dense such that

; ’ . o -2
-very weak correlation between electrons occurs i.e. g < 10

[Isahara 1971]:
The intensity vector of the external magnetic field lies in the 2z~

direction and takes the form of weak inhomogenety

dg ~ . ~ ) ) .
. H = (Ho + y E;)g = Ho(l +Ky)z . . - (1)

The density of the plésmé decreaseé along y—direétion. Our Caculat-

ions assume a HMaxwellian distribution of zero shear
o 3/2 =qv? ,
n(y) (a/7) /2 v, . 2)

o rh
[}

. :
e ¥ (1-y) where n. is the number density ‘at the wall.

Here n(y) = nl 1

In egs.(l) and (2) the relative gradients

k=2 8 e 2 oy - - & dn, 1 (5)
= — ’ R = - =
Ho day y=0 . .. : fo dy y=0 n dy y=0 : .

are considered small and;constant; furthermore k' is assumed inde~

pendent of the integrals of motion Y: = v:7+ v; and v, |kra11
Vx p oS00 T TR

et al 1973/.
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For £ and H to be selfconsistent, Maxwell's equation

47
UxH= 213, @
implies the relationship
2
KD «ESL— = 2 (5}
K 4nKT T B

The balance between the kinetic and the magnetic pressures i.e. B=2,

provides the condition of warm plasma-and equats x,x' numerically.

This will play an important role in what follows.

Often one uses the Boltzmann eguation to calculate the transport

properties in plasma ’Krall et al,1973-Akhiezer,1974-Chakraborty,

1978| .

As is weli known the Boltzmann eguation.has a limited range of vali-
dity, namely, the scattering events have to be well separated in time,
this means small sbattering rates. This enables otie to use the descrit
model lgrank-Kamenetskim1968f in which the fanCtuating‘intera;tioﬁ

is looked for as a collection of closely approaching pairs of electronsa
‘The Coulomb collision. Besides, this puts restrictions on the upper
limit of plasma density as was discﬁssed above.

In the case of plasmz near equilibrium,the.energy is expressed similar

te that for an ideal gas-—ET = é%n KT. If the Coulomb force is not

so strong, hence the interaction energy may be described by Debye

3
theory-Ec = 2“/§§: e? . In other words, the condition of ideal plasma

should be applied only if the electrostatic energy is a smaI; corre-

ction to the thermal energy- Ec << ET, provided that the number of

electrons inside the Debye sphere is large

47 . =1
371;‘? >» X .
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III. The BGK Approximation:

The relevant Boltzmann eguation governing the present problem

is reduced to an equation proposed by Bhatnagar et al, 1954

and is called the BGK model equation
(7

f e om ourf -
v, 5y Ty x ol T E=-vif - £ .

ay
The electrons collision frequency v is proporticnal to the number

density in a plasma. One may write

v o=v, exp- k' (i-y), (8)

where vy is the collision frequency at the wall. The lccal Maxwell

distribution function is

£, = 0 a/m > Zexp [~aly - 0], (9)

U is- the flow velocity.
It was proved by lJohnson,1982l that the deviation of density and
temperature awéy from their equilibrium value are indepgndent of the

presence of shear flow, this permits one to linearise equation (7)

by taking lKogan:l969‘

fLMA = fc(l + 2 CxU). v (10)

The'distnnce'y and the velocity v are nondemensionalised such that

-~ 1
y d/2 and C = az v. The shear Mach number M = o ‘¥W. By puting

(%]
#

%Y
It

f°(1+¢): 4 << 1, and equations(B), {10} in the BGK eguation ({7),

one obtains, the nondimensional linearized BGK equation for the
- .

problem. Droping . over .y we get:

U]

3 _ s 8. _ ¢ 38 7. 5[ g-2c.0]:
CY [_a_}; et (1+¢)] u (],vl('y) [cyac" Cx } —o\cv ] 6[ & ZCxU] ..

0 < y‘gﬂl (11)
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* 3 . . .
where M = g°0l 8/2 designating the cyclotron Mach number,
* *
M v, 1 v
§ = ~—=—= exp-i'(l-y) = F s F o= exp - ' (1-y). (12}
h¥4 R
Here x',x are multiplied by d/2 to be nondimensionalized.
Equation(1l) may be simplified further by writting |Kogan 1969
oiy,C) = C_ ¢lv,C ) . B ' (13
\.(}l-) x\_(,l y) i )

The moment U is determined by (i , by taking the scalar product with

-
respect to the factor e"'/ﬁ3/2
. -c?
“up=<Cle>=sc 4c¢ < &
® x =32
-c?
. i e ¥
= %[ ¢ —=. ac;, (14)
- Y Y
and equation (11) becomes
’ _@__’\L’_ ' Y - PP .'*(1-, 2 39
Cy[cx v K (1+ny; M (lvk!)pl- M \*7ky)vx ac,
= -8 Cy[k‘)' 2v 7. (15)

Our aim is to fcllow the behavior cf the shear flow in y direction,

therefore integrating equation (15) with respect to the welght factor
—Ci ~ :
Cx e "An , thus vields

s

(16)

as the basic equation to be solved. It is impor tant tc note that no

approximations have been made in cbtaining eq. (16} cther than the

well justified one of using the linsarized BGK equation.

IV. Half-range polynomial approximation:
One mav seek'a sclution of eq. (15) by using a half-range

54
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polynomial expansion teéhnique originally suggested by [Gross et
al 1957}, ¢ is divided into two parts
+ -
[ (17}

Y o= v o+
o
where Y (¢ ) is that part of § describing upward (dowerward) going
+ -
electrons . ¥ and ¥ are then expanded separately in polvnomials
, and an approximate solution to some specified order in- these

Y
polynomials is sought. It is convenient here to use the set of inde-

- in C

Qendent {but not mutually orthogormal ) polynomials C;; thus one may

write
o
v iy.c,) = £ BRI ets C ), (18)
VY I B (yIC, Ot C ),
n-O
@ is the Heaviside function, with the properties
l: ¢ >0
b4
O(Cy)= { 0: Cy <0 (19)
ke C =20
Y

v. The_Bounda;y Conditions:

The half-range néture of the expanssion is a way of incorpo-
rating into a polyhomial expangion the discontinuity of the distri-
bution function in velocity space which ordinarly occurs at the
boundaries y = ¢ 1.

The boundary conditions for the single component plasma is different
but physically simpler than those suggested |Shedlovskiy 1967[ for
ordinary two conponent fully ionised plasma in that a fraction ¢ of
the electrons hitting a surface leave that surface with a Maxwellian
velccity distribution characteristic of that sdrface‘s velocity and

temperature. The cemaining (l-g) are assumed to undergo specular
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reflection, In terms of {, the boundary conditions bzcome at the

upper wall (y=l!

T, = u-mfu.cy» + e M O(-C) (20)

P - .

b (locy) f (1=} l-lc’Cy) +e M G‘CY)' {21%

at ihe lower wall (y= -1)

. i .

W -1, = - H -le= - e

W=l Cy) {l=¢)y (-1 Cy) el G(Cy) (22}
(23}

- +*
b (=1,-C )= {l=g)¥ (1,C - M -C ).
LA y) {1-g}y { y) e i O y)

vi. Esplicit solution {zero order):

Following |Pomraning, 1963| and [Johnson,1282[, one may deter-~

mine the coefficients of the solutions (18). by requiring that the

soluticns okey the moments

-c?
;- dc e ! ¢® @+ c ), (n=0,1 m) (24}
:-ca }’ '/‘_’;‘ y -— Y ’ ’ l' oy [

of the governing equation (16} and by truncating the sum in eq.{18)

at the m th term. When m=0

: * " at- 25
N ®(Cy) + By ot Cy). (25}
The nondimensional flow velocity is |cf eq.(14)|
-t -
Cy (B+*B )
U=y fdc S=[ B @(c,) + BT O(=C) ]= === . (263
Y/t oo Y o Y 4
The pressure deviator is obtgined from
man s ;C b
= d 0 e
ny o o - 713/2 Cxcy
& -
mn,F (B -B )
1 c ©
= —'&'— o ¢ (27)
4/n
{28)

where from eq.{12}: F = exp-x'({i-¥} .
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this lowest order solution felliows from

The governing eguaticn for

use of the properties of the G-function given

in eg. {19}, one obtains

dB: a8 - =
! AV 4l = - ! B C + B O (=C ) 1=
S oo = g eeey) - e[l ey v 5 are) b

ol . - by
= -8z [ etc )5 ]+ BO[-9<—cy>-% ] 3. (29)
Lo . : *
The m=0 moments {24} of the governing eg.(29) give equations for BO:
-+ -
. €éB {B_~B_)
I ] rnT 1 - o _©
= - K'B_j= -0 ——
2‘/“['1: ()% &
. . {30)
.o a3 (8_~B_)
i or < -
S S L .
25 dv [« 4
The sum of 2gs (30) gives
an ot - o
— ~x'h=0 ; hzB -8B 131)
ay ] [+]
so that
-1 -
E=hF" . {32)
The difference of eqgsz (30) gives
4 -
1 olel B -B’\ <+ - '
— [ =2 -xig]=~8-2-) : gz B+ . (33)
Fadd+v4 - 2 o o
2T -
From which if folliows that
/r-,,fn
Y70,
11l r =x*(1l-y}
g =g, exp - i {l-y) - [ ek (v _ 57, (34)
Z !

The constants of integration h_ and gl may be evaluated £Iom- the

boundary conditions (20-23)one obtains for the lowest order solutions
that

- + - . .
B, (1) = {l-s) B {1y + e M _ (201)
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+ - .
Bo(l) = (l-g) BO(-l) + e M {21%)
*-1)= (1~g) B(-1) - ¢ M (22
BO(- )= (1l-~g) o ) € )
B (-1) = (1-¢)B (1) - ¢ M (237)
o ) = (1-e}B (1) € 3
solving one gets at the upper wall
=8 - - . 2.5 _(1-&jM (36)
hy = Bofl) = Byl = (2~} :
g, = BJ(1) +#B (1) =2¢eH £37)
Comparison of (26) and (27) shows that
mnl mnl
= )Fh = h, =P = constant. (38)

P =
¥ 4/m0 awme L xvl

The direct integration of eq. (16} with respect -to the weight factor

py (8] .
C; 237§: , after some labor, leads to the solution
" -

eK'(l"Y) 1. ' (39)

Py = Pavt

:0<y <
It is seen from'eq.(js) that the law of conservation of shear mone-
tum is obtained, this is an advantage of using the half range poly-
nomial expansion. The same result could be determined from eq. (39)
by rigorously demanding that

- k' << 1, (40)

i.e. now, the cendition of smallrinhomcgenity for both megnetic field
and density numbers is Justified. This allows one to linearize eq.
(34),
= - - T e Vo . 1 -
9=9, -[x*g - /nén Ji-n, (41)

© and the dimensional flow velocity u_ty) = U is

a [
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1 M l-¢
U (y) = — g==— {d/2 -[ «* + /1 6, =] (d/2-)},  (42)
* 4/ &/ Lz

(y here is dimensional). Egs. (38) and (42) display the familier

relation,
de
ny = - u -d_y- ' (43)
by which the coefficient of visocity amounts to
v 1
LS (44)

u:ul[l'}':’%(;&)xnl] -’

Here Knl is the Knudsen number at the wall,
y ] mnl
1 mav, ,

' VII. Discussions and comparisons:
1- It is helpfull to bear in mind orders of magnetudes for varios
quantities of interest in electron plasma.
Typical values may be taken to be
, . B fe) R - R
¢ =0,9, T=577TK , n . 101%n 3 corresponds to the degree

of rarefaction in the transition region § . 1.

/2 =1ecm , B, = 0,1 Gauss, Q = 0,178 x 107 rad/sec,

c=3X lolocm/sec.
0 16

x 10728 gn, e = 4,8 x 1072% cgs, & = 1,38 x 1071% cal/deg,

m=29
Vl=losse51.8hear spead W will be considered in the order of
105 cm/sec, which can be reached in plasma laboratories or

observed in astrzophysical investigations. .

- These values correspond, to - )

=y 7 ' -2 * 7
@ % - 1,33 x 10’ cm/sec = Vpr 9= 2 x 10" ,M =0,134,
3

M= 0,75 x 2072, 0= 6,917 = 1,687 x 107 e,

D

-f-,-)"l/ 3c4,6x10 % em, N~ 200.
59
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2- The evaluation of the relative gradlents k‘K' are contrallicd by

several factors,let us prove it:

. ) . [e] .
At y=0, i.e. along x-axis , the rate 5? may be deduced using

" Maxwell's equations:

_an ) 4"Jo,_ ) 4nenOUX(0) ,
dy y=0 C s C

{(44) at y=0 and dividing both sides by Ho'

substituting from eq.

41 en
dH M ) y
Hl &~ @ AL SIS ED ] =k (47)
Yo 2/n
Making use of the relations
. N - ) '2
—_Ei__ = J& 11 = T:g = KT -
4'nn(')k'r B ' 2o 2 '
we get after some manipulations that
__ B > l-¢ '
k=5em[1-k /-61(261. (48)

If B=2, then as was discussed before Kk = -k', so from eq.(48), and

the above numerical valueg

- eb“! i-e
k=1 -1 8, G0 ]

eMl—l

1

-4 (49)

L]

Bl 7'45 X lO
. *

Thus we see that four independent quantities namely M, M , §, and ¢

control the relative gradient ¢'.

Two factors affect the coefficient of thermal ViSCOSity;

3- a)
T . ) . N PN N '_“ Q. dn
First, in the denomenator of eq.(46) as K Knl = - :; dy
2% an’

increases, | decreases. Second, as the quant:ty KKnl H ay

increases, u decteases also. Thzs 1s consxstent with the notion:

o

of "magnetic tray""which is in our casé the magnetic confinment

of plasma between the two boundaries.
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On the other hand, according to the above numerical values, we

-0
get that p = 8 x 10 poise, where as |Shedlovskiy, 1967)
5 mRT KT, 11
= — (—=)*= 6 x 10 oise ; here
He BA_(2) v @ ( 2) P !
3 e
o2
r 4aRT
A.(2) = 2 gnqievi) - =22 ] 224 ;v = 22ET L gun
2 01 2'\/’2 ol ez
01 .
Hence
B> g

i.e. in magreement with Debye approximation.

From eq.{44), as plasma electrons possess considerable randum
thermal motion, so firstly the enitial electron veloéity is
caused by the movement of the boundary walls, and secondly by
the external magnetic field. This result is analogous to that
presented by Chakraborty,197el in the case of Couétte flow of
electrically conducting incomoressible and viscous fluids.

Due to the inhomogeneous magnetic field, & transverse dritt

gradient for the individual electrons ig produced ]Frank-Kamené

etskiy, 1968] , its velocity eguals to

myv? ~
v, =c —=_ |88l | (50)
B 2en2 19¥1 7
[+

This expression can be simplified if we introduce, without loss

of generality, Vo instead of v, and making suitable substitutions

we get:
. k d
a g 't
(51)

3,7 x 10" em/sec << Vo
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in agreement with the condition of weak variation of magnetic field
mentioned by }Arsimovitgh et al,1972|. comparing this result with

the mean velocity (¢27 at v = 0 and y = d/2:

U (0} = 3,77 x 10% cm/sec Ux(d/2) = 4,5 x 10% em/sec

which indicate that

Vd < Ux(O) < Ux(d/Z;.

On the other hand the slip velocity at v = 4/2

v =Y oy (a/2) =5 x 103 cm/sec
s 2 x

is less than the drift velocity by one order of magnitude.

In conclusion . from the physicél point of view the gained

results are a step towards a deeper understanding of the inﬁeraction

of plasma with boundarv surfaces.
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