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ABSTRACT: \ R

" 1In this paper, the effect of integration cap size on geoid detenmination was studied, when
using gravity disturbances and vertical deflection as input data. For this ptupose, a series of -
varying cap radii was used to predict gravimetric geoidal hieights at discrete GPS-Benchmarks, -
using both the Hotine and deflection-geoid techniques. In both cases, the results showed

 significant dependence of the resulting geoid accuracy on the integration cap size. The two

methods showed comparable behavior in the vicinity of the cap radius, which is consistent with the
maximal resolution of the reference geopotential model. At larger cap sizes, the pérformance of
the deflection data type was significantly better than the gravity disturbances, which in tum -
showed a dramatic degradation of the geoid accuracy. Therefore, when solving for-the geoid
without modifyinig the integration kernel, it is strongly recommended to use large cap sizes along -
with the deflection-geoid method. If gravity disturbances are to be used for geoid determination,
then it is recommended to use as small integration cap as possible. o
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1. INTRODUCTION

Gravimetric gecid determination via the model
approach is generally characterized by solving the
geodetic boundary value problem (GBVP) using
integral formulas. In modern geeid determination, the
integration is carried out over a limited integration
cap around the computational point. Such cap is

“supposed to provide the effect of local data, giving

the medium-to-short wavelength component of the
gravimetrically predicted geoidal height. The long

wavelength spectrum is synthesized from an -

appropriate ~ high-resolution geopotential model,

whereas the high frequency features are implied by

the  topographic effect in the vicinity of the
computation point. ‘ a
Theoretically, the integration cap radius y, should

- be consistent with the maximum resolution, Ny, of

the used geopotential model [6],

v, =180°/N,,,, W

~ However, some factors could affect the above ideal
relation. Examples aré the local uncertainty of the

used geopotential model, the roughness of the local
gravity field, the local data type, resolution and
coverage ([2] and [7]).

Some previous studies have been concerned with

 the effect of integration cap size on geoid

deterrmination using Stokes’ formula ([1] and [3]).
The aim of this study is to investigate the effect of
cap size on the accuracy of geoid detefmination, via
both- the Hotine and Deflection-geoid techniques.
These two methods utilize gravity disturbances and
vertical deflections as input data, respectively.
2. RESIDUAL GRIDDED DATA

For this research, three sets of 2'x2'. gravily
disturbances, meridian and prime-vertical deflection
components over the Egyptian Territory were

available, relative to the WGS-84 geocentric
ellipsoid. - These grids represent three’ collocation
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solutions, using the Egyptian scattered heterogeneous
data as input. Each of the three data grids covers the
region bounded by (22° N<¢'£32°N; 25°E <A<
36° E). The low frequency contribution was removed
from the data by subtracting the values, synthesized
from the (650x650) high resolution EGMSGEGIT
geopotential model tailored to the Egyptian Territory.
This harmonic model was also reduced for the local
direct and indirect Helmert’s topographic effect,
according to the algorithm described by [5]. As such,
respective  gravimetric  -quantities could be
synthesized at the geoid level, without any violation
of the harmonicity domain. The 2'x2' geopotential
model derived gravity disturbances and deflection
components are, respectively, evaluated by ( [4] and

[10})

B8 = (kM/r’)E (n +1) (afr)’ NZZ;(E:E cos mA+

gnm sin m)&) -.Enm (Sin G) (2)

Eorme = (kM/f Y)Z (a/ 1‘) Z (E;m cosmh +

. m=0

Sam sin m?\,) AP (5in 8)/d6 e
630 ooy
Tgne =—{kM/t*rc0s8) Y (a/1)" > m (C:\m (—sinmi)+
. =2 i m=0

Sun COS mk)?w (sin6) @
With: '
the geocentric latitude,
the geodetic longitude,
the geocentric radius,
the normal gravity unphed by the reference
ellipsoid,

the geocentric gravitational constant,
the equatorial radius,

NE = M m

om

coefficients of degree n and order m, reduced
tor the even zonal harmonics of the reference
ellipsoid,
Sm the fully normalized spherical harmonic S-
coefficients of degree n and order m, '
Pua (sin0)  the fully normalized associated Legendre

function of degree n and order m.
The GTOPO30 digital elevation model [11], was

used to account for Helmert’s topographic effects

(Figure (1)). For instance, regarding gravity
disturbances, Helmert’s condensation effect eould be
approximated by the Faye reduction value [13]

8g" =(kpR?/2){ApAhcos (pq)Z((Hq -H,) /13) €)]
where

1 the distance between the computation point and

the running point,
k  the gravitational constant,

H, the orthometric height of the computation point,

Lathtude {

the fully normalized spherical harmonic C- '

H, the orthometnc height of the running pomt
P themean crusta[ density (p 2.67 gm/em? ).
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Figure (1): GTOPO30 contour map over Egypt -
{Interval: 100 m)

3. SCATTERED STATION SOLUTIONS

The residual medium frequency gravity
disturbances and deflection components grids are
used to compute sets of residual geoidal heights at
scafttered and snitably distributed 15 GPS/Leveling
stations, These GPS data were made available from
different Egyptian data sources. The stafions were
selected, such that the distance between the
outermost points and the region boundaries did not
exceed the maximum integration cap size, as shown
in Figure (2). The discrete solutions were
accomplished using the Hotine and Deflection-geoid
formulas, respectively, where the integrations were
carried out over limited caps around the discrete
computational pomts
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Figure (2) Distribution of the computational points.
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In spherleal approximation, the residual geoidal
solution by Hotine’s formula is expressed as {8]

._(R/47wp)z ;qu (v, )coscqu?L (6)

where ' 7

R the mean radius of the Earth (taken = 6371 km),

¥, ihe normal gravity pertaining to p, on the WGS-
84 ellipsoid,

&g’ 1 the residual gravity distarbance at the, running
point g, ; |

Ap & A\ the data grid spacing in radians,

vy, the spherical distance between p and g,
expressed as '

coswm = smcpp sin ¢, +cos P, COSP, COS(?L -X )

Q)
H(y) isthe Hotine’s kemel, expressed by;

H{y)=1/sin (.\p/2) -‘11_1[1 + I/sin(q;/2)] (8)

On the other hand, the residual geoid
undulation is formulated by the Deﬂectmn—gemd
technique, as follows;

Nf=(R/4m)Y. > (& cosa,, +n;sin oy, )
@ A .

dC(\ppq )/dv, coso, Ao AL (9)
where £ & 1, are the residual meridian and prime-
vertical deflection componerits, respectively, at the
rumming point g; and Ogp 18 the azunuth of the
spherical arc qp [4],

tano, = ( oSO, sin Alpq / [2 sing,.c05Q,. -

sin® (A, /2)~sin Aq;m] 0y
C(wpg) 1s given by '
C(y)= —210gsm(q;/2) ~1. SCOS(W) -1 11}
and,
dC(w)/dy =~cot{y/2)+1.5sin(w) (12)

By definition, the above integrals have singularity

at the computation point. Thus, the relevant effect,
8N, of the data value at the computation point p, is
accounted for in Hotine’s integration as follows;

8N, =(5gp/7p) (AcpA?ucQscpp/n) -3
Regarding the Deflection-geoid . technique, the
corresponding value is expressed as [4]

8N, =R? (};’ +1r1’r )(A(pA?\,cos (pp/4112) (14

where & & 1 are the north and south gradients of
the re31dual meridian and prime-vertical deflection
components, respectively, at the computational point

p-

r

The Stokes’ algotithin [9] was switched into the
Hotine and Deflection-geoid formulations. In the
ciurrent work, various sets of residual geoidal
solutions were carried out at the discrete GPS-
Benchmarks, via the above two techniques, using
different integration cap radii. In this respect,
integration cap sizes of y, = 0.13, 0.28, 0.36, 0.5
degrees and then every 0.25° till a cap radius of 2°
The specific value wo = 0.28° corresponds to the
Nyquist frequency of the reference harmonic model,
according to Bq. (1). After estimating the discrete
residual geoid height sets, the long and short -
wavelength contributions are then restored, yielding
the respective full eompouent geo1da1 undulatlon
values, :

N =Ngpy + N +N° o ' (15)

The low frequency geoid was computed from the
same geopotentlal model,

Noo (kM/ry)Z(a/r) Z(Cmcosml+

S s m?\.) Pus (sin §) a 6)

The topographic indirect effect, N" on the geoid is
assessed as follows [13]

N* = ~nkpH /7, - (keR*/61, ). -
S A¢ Ahcosg, {HI ~H /) an

where the first term expresses the effect of the
removed Bouguer plate and the second term reflects

the effect of the local topoaraphtc frregularities with

respect to it.

- 4.RESULTS

Figure (3) shows the variation' of the mean
difference  between the  GPS-derived and
gravimetrically estimated geoidal heights, based on
Hotine and Defection-geoid formulae; with the cap

. radius. The sign of the mean difference does not

change. Regarding the Deflection-geoid solution,
apart from a local minimum at cap radius of 0.28°,

" the mean difference can be considered constant till a

radius of 0.75° and then decreases with increased cap

radins. In gencral, the Deflection-geoid method

yields miean differences, which are significantly less
in magnitude than those pertaining to Hotine’s
integral. In addition, regarding Hotine’s technique,
increasing the cap radius worsens the mean
difference between the observed and the predicted
geoidal heights. For both cases, the range of the
variation of mean with cap size is about 5 cm.

Figure (4) shows a similar comparison, regarding
the standard deviation (of single difference) of the
discrepancies between the observed and estimated
geoid undulations at the discrete GPS-Benchmarks.

Just beyond a cap radius of 0.28°, the two trends
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intersect, and then the Iotine method yields a
monotone increase of the standard deviation as the
cap radius increases, while the Deﬂectlon-gemd
method shows a decreasing trend in general.
Specifically, at an integration cap radius of 0.28° and
less, the Hotine solution gives a little better standard
deviation of difference. Moreover, at v, = 0,28°% the
Deflection-geoid trend has a local maximum. The
Hotine and Deflection-geoid methods yield a
standard deviation variation range, with cap size, of
ashout 13 and 10 cm, respectively. It should be
emphasized that the resulting Hotine trends resemble
those obtamed from Stokes' method in [3]

Cap slze (degl ee)"

Flgure (4) Standard dev1at16n of gemd dlscrepancy
Versus cap size

5. CONCLUSIONS

In terms of the mean geoid discrepancy, the Hotine
method results in a bias, which
larger than that pertaining to the Deflection-geoid
method, This hias exhibits a nearly monotone
increase, as the integration ¢ap size increases. Beside
at an integration cap consistent with the harmonic
model’s resolution (y, = 0.28°), the Deflection-geoid
method is still capable of reproducing a quite small
value for the mean difference at large cap radii.
Regarding the standard deviation of difference, the
two gravity disturbance and vertical deflection data
types vield comparable features in the vicinity of v,
= 0.28° This implies that the reference geopotential
model is consistent with the local data. Slightly
exceeding that cap size value, the corresponding
trends diverge dramatically, where the vertical
deflection data type shows significantly better
standard deviatioris. At a cap size of 2° the standard
deviation pertdining to the Deflection-geoid solution

is significantly -

becomes better than that of the Hotine method by

" gbout 16 cm.

Due to its relatively rough nature [2], the gravity
disturbance data seems to work well only within a
limited integration cap that describes its high
frequency nature. Being the horizontal gradient of the
geoid, the vertical deflections have moderate spatial
variability, and hence they may give better resnlts
with larger cap sizes. Moreover, such different
behaviours could be also attributed to the lack of
modification of the integration kemels in both
solutions {12]. In particular, the unmodified Hotine's
kernel could have adversely degraded the solution,
when using larger cap sizes. :

© Based on the obtained results, and wheri solving for

the geoid without modifying the integration kernel, it
is recommended to use a large cap size along with
the Deflection-geoid technique. This would provide
the best results. If gravity disturbance data are to be
used, then the smallest possible integration cap radius

" should be used. Also, the application of modified

kernels to both the Hotine and Deflection-geoid
techniques should be investigated, whether it would
yield consistent geoidal height accuracies.
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