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ABSTRACT 

A simple, efficient numerical solution method for nonlinear 
boundary value problems is presented. The approach depends on 
linearizing the finite-differenced equations for the dependent 
variables then solving the correction equation for the dependent 
variable by the tri-diagonal matrix method, finally correcting the 
solution at each iteration. The method is somewhat similar to 
Newton's method in that the Jacobian is evaluated at each iteration, 
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but does not require the evaluation of the inverse of the Jacobi 
matrix at each iteration which means saving both computing time 
and memory usage. Two test problems were chosen to check the 
validity of the technique. 
The proposed method is .very efficient if applied to boundary-value 
ordinary differential equation or one-dimensional time dependent 
partial differential equation. 
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INTRODUCTION 

Numerical methods are useful for solving fluid dynamics, heat and 
mass transfer problems, and other partial differential equations of 
mathematical physics when such problems c-ot be handled by the 
exact analysis techniques because of nonlinearities, complex 
geometries and complicated boundary conditions, one generally 
resorts to numerical technique for solution. The boundary value 
problems become nonlinear due to the nonlinearity of the 
governing equations, or of the boundary conditions or both. Most 
physical problems are actually nonlinear. The nonlinearity of these 
equations reflects the main features of the system. Therefore, the 
nonlinear terns should not be replaced by a linear term because 
the main features may be lost during the linearization process. 
When finite-difference approach is used, the problem domain is 
discretized so that the values of the unknown dependent variables 
are considered only at a finite number of nodal points instead of 
every point over the region. 
There is no difficulty in applying the finite-difference 
approximation to discretize a nonlinear problem; but the difficulty 
is associated with the solution of the resulting system of algebraic 
equations. 
Several references on the fundamentals of discretization and fmite- 
difference method include Richtmeyer and Morton (1967), Smith 
(1978), Andreson (1978), Tannchill and Pletcher (1984), Berezin 
and Zhidkov (1965) and Roache (1976). 



In this paper a new technique was developed for solving nonlinear 
boundary value problems by iterations. 

OBJECTIVES 

The objective of the work reported here was to develop a simple 
and efficient numerical method for the solution of nonlinear 
boundary value problems with the following features. 
1. The method should be simple and have good convergence 
characteristics, 
2. Evaluation of the inverse should not be required 

In the following section the method will be explained through two 
examples. 

Test problem 1: 
Application to Ordinary Differential Equation 

Consider the following nonlinear boundary value Problem 

2 y"(x) = 
[Y'(x) + 11 I < x < 4  (1)  

with the boundary conditions 
y(1) = 113 y(4) '2013 

The exact solution for this problem is 

4 3n-. y(x) = - x  
3 (2)  

The differential equation (1)  is discretized by the central difference 
scheme. The domain a < x < b is divided into M equal subregions 
each.of thickness Ax = (b - a)/M as illustrated in Fig. 1. 



Fig 1. Computational Grid for Problem 1 

~ $ 1  - 2 yi yi+l + 2 yi yi-1 - + 2 yi+l 

- 4 d x y i  + 2 A x y i - l - 4 ( ~ ) 3  = 0 

which can be written as 

Equation (4) gives a set of nonlinear algebraic equations for the yi. 

Methods of solution of such systems can be found in Rheinboldt 

(1974), Ortega and Rheinboldt (1970), Traub (1964) 
By linearizing equation (4) using the first two terms of Taylor's 
series 



Equation (5) gives a set of linear algebraic equations for the 
corrections Ei  with a matrix of coefficients of tri-diagonal form 
which can be solved by Thomas algorithm (Patankar, 1980). Once 
the corrections are calculated for this level of iterations. The 
corresponding yi can be calculated from. 

Table 1. Comparison of the Exact Solution with the proposed 
, 

method for very coarse grid (2 interior nodal points ) 

Table (1) shows a comparison of the proposed numerical method 
with the exact solution for a very coarse grid 4 grid points ( 2 
interior grid points ). 
In figure (2) the numerical solution is compared to the analytical 
solution. for a finer grid (20 interior grid points). The numerical 
solution was obtained after 15 iterations for the accuracy. The 



comparison shows a good agreement between the numerical and 
analytical method. 

Fig 2. Comparison between Numerical and 
Analytical Solutions 

Test Problem 2 
Application to One-dimensional time-dependent Nonlinear Partial 
Differential Equation. 

Consider a nonlinear differential equation of the form 

au - aZum 

at axz  (8) 

Where m is a positive integer and m 2 2. This equation can be 
written in the form. 



The finite difference approximation for equation (8) is 

Where 

is the central difference operator for the second derivative ,and. the 
weight factor 8 ( 0 < 8 < 1) controls the degree of implicitness. 
The finite difference approximation given by equation (10) is not 
convenient for computational purposes because the resulting system 
of algebraic equations is highly nonlinear, hence is difficult to 
solve. To alleviate this difficulty, the unknown um(i,,j +1) is 
linearized by the following procedure discussed by Richtmyer and 
Morton (1967) and Smith (1984). A Taylor series expansion of 
um(i, j +1) about j giJks 

um(i, j + l )  = um(i , j] + J] At + ...., 
at 

A result which replaces the non-linear unknown um(i, j +1) by an 
approximate linear in u(i, j + 1) 

Define ei = u(i,j +1) - ~ ( i ,  j) 

Thus equation (10) becomes 



+ ~ ~ - ~ ( i + l , j ) ~ ~ + ~ ]  + u m ( i - l , ~ ]  - 2 u m ( i , j )  + u m ( i + l , j J  

(12) 
Which gives a set of linear equations for ei. The solution at the 
(j +l)th time-level is obtained from 

u(i, j+l) = u(i, j) + &i (13) 

define r = ~ t l ( d r ) ~  

thus equation (12) becomes 

- r m 0  ~ ~ - ' ( i - l , j ) E ~ - ~  + [ I +  2 r m  gum-l( i , jJ]  ~i 

- r m O u m - l ( i + l , J ] ~ i + t = r [ ~ m ( i - l , ~ ]  - 2 u m ( i , ~ ]  

+ um(i + 1, j]] 

(14) 
Equation (14) is unconditionally stable with no restriction on the 
value of the parameter r. The only restriction on r is that for a 
given a and Ax, the resulting value of the time step At should not 
be large to impair accuracy. Equation 14 gives a set of linear 
equations for ei.with a matrix of coefficients of tri-diagonal form 
which can be solved directly at the jth time level for the 
corrections Ei by Thomas a lgo r ih .  Once the corrections are 
calculated for this level of iterations the corresponding . 
u(i, j +1) can be calculated from. 

Figure 3 illustrates the finite-difference molecules for the Crank- 
Nicolson implicit scheme. 



Fig 3. Computational Grid for Problem 2 
? , '  
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For the special case m = 2, equation (8 ) is just like a nonlinear 
transient heat conduction equation with temperature ,d&pendent 
thermal conductivity. If we choose 8 = 0.5 ( Crank-Nicolson ), Ax 
= 0.05, and At = 0.025 thus r = 10 < .  

Figure 4 shows the temperature distribution for different time 
level. 
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Fig 4. Temperature Distribution along a thin rod 
at different times 



A comparison was not made since an exact solution was not 
available but the judgement on the result can be guessed from the 
convergence rate and the steady state solution which is eventually 
zero. 

Summary of the Numerical Method 

1- Linearize the discretiztion equations with Taylor's series 
2- Guess the solution u* 
3- Solve the correction equation Ei 
4- Calculate u by adding the correction, Ei to the guessed value u*. 
5- Treat the corrected u as a new guessed value u*, return to step 
2, and repeat the whole procedure until a converged solution is 
obtained. 

DISCUSSION 

The method is somewhat similar to Newton's method in that the 
Jacobian is evaluated at each iteration. However, it doesn't require 
the inversion of the Jacobian at each iteration 
The two test problems chosen gave a very high convergence rate 
even with a very coarse grid. If the differential equation is 2 
dimensional or more the convergence rate will be slower than 
Newton's method but it is more compatible with the nature of the 
nonlinear problems which could not be solved directly. But we will 
obtain more efficient and economical solution by our proposed 
method. 

The method of course, is not free from difficulties. For 
instance, it does not always converge to the solution; however, this 
is typical of all numerical techniques for nonlinear equation 
systems. The failure of the method to converge is typically due. 
This difficulty could be circumvented by choosing better initial 
values of the variables. However, in many cases this may not be 
feasible. 



CONCLUSIONS 

A simple, efficient numerical solution method for nonlinear 
boundary- value problems is presented. The method gave the same 
convergence rate as Newton's method if applied to ordinary 
differential equation or one-dimensional, time-dependent partial 
differential equation with the advantage of no matrix inversion is 
involved. Based on the successful solution of large number of 
problems, of which a two have been presented here, we believe 
that the objectives have been met. 
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