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ABSTRACT 
8 ,  

I .' 
The dynamic formulations of manipulators lead to a set of highly nonlinear and 
strongly coupled differential equations which represents the dynamic model of a 
manipulator. Beside many other forces, this model describes the actuator forces 
(or torques) which cause the manipulator joints to move. In this paper, manipu- 
lator joints are modeled as elastic springs with joint stiffness in order to impose 
elastic forces to the dynamic system model and to monitor their influences 
when speeding up the manipulator end-effector. The kinematic relationships are 
described by using the zero-reference-position method. Both the inverse and 
direct dynamics problems are developed by appl~ng Kane's dynamical equations 
as an analytical tool. A Stanford-type manipulator is considered as a numerical 
example. The implications of the results are monitored, compared and justified. 
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INTRODUCTION 

In robot performance, the discrepancy always exists between the actual and the 
desired position and orientation of a robot end-effector. Some of these discrep- 
ancies due to variations in robot kinematic parameters resulting fiom tolerances 
in robot manufacturing and assembling; while others due to joint drive compli- 
ance between the angular encoder and the actual angular output. Due to the 
complexity of the dynamic equations of motion for n-link manipulators with 
joint elasticity, most researchers have relied on computer programs to generate 
those equations. 
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Kuo and Sanger [l] modeled redundant manipulator joints as elastic springs 
with joint stiffness in order to select a desired or specified joint configuration. 
Spong [2] studied the dynamics of a manipulator with elastic joints by utilizing a 
nonlinear feedback control. In this paper, the actuator force at each joint is 
modeled by an elastic spring. The influence of increasing the joints s t f iess  with 
speeding up the end-effector task on the performance of positioning and orient- 
ing the end-effector precision is monitored. The analysis is carried out for a six 
degrees-of-freedom Stanford-type manipulator. However, All formulations are 
devoted to general manipulators. They do not prone to specific configuration or 
dimensions. 

KINEMATICS ANALYSIS 

The kinematic relationships between the links are described by using the zero- 
reference-position (ZRP) method. This method was introduced by Gupta [3]. It 
has the advantages that it is not prone to the discontinuity difficulties as those in 
the Denavit Hartenberg notation. Due to the nature of this method, small 
changes in the structure inherently correspond to small changes in the structure 
parameters. It has also proven its effectiveness and versatility in many works on 
both kinematic and dynamic analysis of robot manipulators [4], [5], [6] ,  [7] and 
[8]. The joint coordinate systems in this method are not used. Instead, a conven- 
ient reference position of the robot is chosen and the following vectors are de- 
fined in the world coordinate system (Fig. 1). 
uo, 3 a unit vector along joint axis i. 
bo, 3 a body vector which connects a point on joint (i-1) to a point on joint i. 
uoa and u& 2 two perpendicular vectors fixed on the end-effector. 

All the above mentioned parameters are given in their zero reference position 
(with zero subscript). They are converted to the current position as the manipu- 
lator moves. The current vector are derived from their zero-reference-position 
vectors as follows [4] 

Where Eoi, Eo,i+l , Ej and Ei+I are derived from the Euler-Rodrigues parameters 
and Rodrigues composition formula. These formulas eliminate the inefficiency 
due to the use of the regular rotation matrices. 

MODELING 

The dynamical equ-ations lead to a set of highly nonlinear and strongly coupled 
differential eq-uations which represents the dynamic model of a manipulator. In 
a six degrees-of-freedom manipulator, the equations of motion is the time rate 
of change of its linkage configuration in relation to the external torques at the 



gripper and those 
exerted by the 
actuators. In the 
inverse dynamics 
problem, the time 
history of the re- 
quired joint actions 
(external forces 
andtor torques) are 
obtained. Whereas, 
in direct dynamics 

Fig. 1. Zero reference position notation with an elastic spring at 
each joint 

problem (simulation), the joint motion is computed when the joint forces and/or 
torques are given as functions of time. It is an important tool in the dksip and 
testing of manipulators or their control schemes. Both the inverse and direct dy- 
namics problems are developed by using Kane's dynarnical equations. The ad- 
vantage of this method is that it eliminates the nonworking interactive forces 
between links. It also facilitates the generation of dynamic equations in an ex- 
plicit and computationally efficient form [7] 

where H(d is an nxn symmetric, non-singular inertia matiix, C(q, sajj is an nx 1 
vector of centrifbgal and Coriolis effects, G(e) is an nx 1 vector of gravity force 
and end-effector loading, and f is an nx 1 vector of actuator forces (or torques) 
and the elastic forces or (torques). 

S represents the generalized speeds. They are quantities intimately associated 
with the system motion, rather than merely with its configuration. They are also 
used to take advantage of spkcial features of a given physical system. They can 
be introduced as follows: 

N .  

s, =CY, +or 

where y, and v, are functions of the joint variables (ql, q2, ...,q,,) and time (t). 
The generalized speeds could be chosen to be simply$ = 4 ,  and hence s = q . 
However, they can be also chosen to be the angular velocity measure numbers; 
or the linear velocity measure numbers 

In this paper, the analysis is performed as follows: First, during the computer 
simulation, the actuator force at each joint is modeled by an elastic spring. i.e., a 
torsional spring for revolute joint or a rectilinear spring for prismatic joint. As 
the manipulator moves, the joint configuration is changed from its initial value 
q, to the current value qc. As a consequence of joint stiffness, there exists a 
stiffness force Q applied at each joint. It can be expressed as follows 



where k is the stiffness constant. Even though different stiffness constant can be 
used at each joint, only one value is used for all joints in this paper. Second, a 
trajectory is assigned in such a way that it can perform its task with diierent 
end-effector trajectory speeds. This is done by gradually increasing the manipu- 
lator trajectory execution time. As a result, the influence of increasing the joint 
stiffness with speeding up the end-effector task.on the performance of position- 
ing and orienting the end-effector precision is monitored. 

A NUMERICAL EXAMPLE 

A six degrees-of-freedom Stanford-type manipulator, which contains five revo- 
lute joints and one prismatic joint, is considered. A trajectory is chosen in such a 
way that the end-effector remains tangent to a conincal surface. A point p at the 
end-effector moves on a circle of radius 5 inches in a cycloidal fbnction profiles 
at the beginning and the end of its motion. The trajectory execution time are 
selected to be 3, 6 and 9 seconds. The joint stiffness constants (k) variations tare 
0, 0.005, 0.01 0.015 and 0.02. Table 1 represents the maximum rotational and 
positional deviations with increasing the joint stiffness and task executing time. 

Table 1 Maximum rotational and positional deviations with in- 
creasing the joint stiffness and task executing time 

Stifkess t = 3  t = 6  t = 9  

k Rot. Pos. Rot. Pos. Rot. Pos. 
0 0.36E-12 0.69E-11 0.65E-14 0.69E-13 0.36E-14 0.49E-14 

Figure 2 shows high degree of trajectory tracking precision for zero joints stiff- 
ness. The precision increases monotonously with speeding up the end-effector. 
On the other hand, they increase moderately for other joints stiffness. In this 
case, the precision trajectory tracking decreases as the stiffness constants (k's) 
are increased. Figure 3 represents the local rotational and positional deviations 
when the trajectory execution time are 3 and 6 seconds. Whereas, Fig. 4 repre- 
sents the local rotational and positional deviations when the trajectory execution 
time is 9 seconds. From the shown figures, the trajectory tracking precision is 
higher in local rotational deviations than those in local positional deviations. 
Moreover, both Figs. 3 and 4 show that speeding up the execution time leads to 
more oscillatory behavior which, as a consequent, tends to improve the preci- 
sion in the trajectory execution. 
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Fig. 2. Maximum rotation and positional deviations for different joint stiffness values ve'rsus 
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Fig. 3. Local rotational and positional deviations for t =3 and 6 sec. 
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Fig. 4. Local rotational and positional deviations for t =9 sec. 



CONCLUSIONS 

The kinematics rel&ionships are developed by utilizing the zero-reference- 
position method. Whereas, both the inverse and direct dynamic problems are 
developed based on Kane's dynamical equations. All formulations are devoted 
to general manipulators. The influence of increasing the joint stiffness with 
speeding up the end-effector task is monitored to investigate the performance of 
positioning and orienting the end-effector precision. The analysis has been con- 
ducted for a Stanford-type manipulator. It shows high degree of trajectory 
tracking precision for zero joints stiffness. On the other hand, the maximum ro- 
tational and positional deviations increases monotonously with speeding up the 
end-effector. It also shows the trajectory tracking precision is higher in local 
rotational deviations than those in local positional deviations. Finally, speeding 
up the execution time leads to more oscillatory behavior which tends to improve 
the precision in the trajectory execution. 
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