$$
-5 I-
$$

MATHEMATICAL SIMULATION OF
MACHINE TOOL SIRUCTURES

1- sumpary:

Machine tool structure is the principal part of the machine which contributes to its dynamic behaviour. For this reason, the study of the different alternative design configurations of the structure will be necessary, and the mathematical simulation of such structure becomes an effective tool.

In this work, the dynamic characteristics of the structure of a horizontal knee-type milling machine are investigated. Basing upon the classical beam theory, a mathematical model for the structure is introduced. With the aid of this model, fourteen suggested design solution are studied and compared with each other. The suggested fourteen structures are of the same height, main dimensions, wall thickness and mass.

The study results in predicting the most suitable structure. Thereby a considerable improvement of the dynamic behaviour of the considered machine is achieved.

2 - INTRODUCTION:

Due to the development of digital computers, several analytical techniques have been adapted for predicting the static and dynamic behaviour of machine tool structures. In fact, these techniques are based on simulating the structure of the machine by mathematical mode. Thereby
(I) Abdel-Hady Abdel-Bary Nasser, Prof. Dr.. Head of Production Engineering \& Machine Design Department, Faculty of Engineering : Technology, Menoufia Univertity,
(2) Hassan Ragab El-Sayed, Prof. Dr. Paculty of Engineering, Alexandria University.
(3) Soad Mohamed Serag, B.SC., Ph.D., Lecturer, Production Engineering \& Hachine Design Department, Faculty of Engineering E Technology, Menoufia University.
(4) Salem M. Samak, B.Sc., Demongtrator, Faculty of Engineering \& Technology, Menoufia Univeraity.
the different influencing parameters could be inter-related and their effects could be investigated. Applications of such techniques to some types of machine tools are found in the literature ${ }^{(1-9)}$.

In this work, one of these techniques, namely the classical beam theory, is used to investigate the effects of the structural configuration on its dynamic behaviour. The structure of the horizontal knee-type milling machine is chosen, and the different possible variations in its shape are studied.

3 - IHE MATHEMALICAL MODEL:

Fig. (1) shows the general shape structural main parts and the main dinensions of the considered horizontal kneetype milling machine. The basic model of the machine is shown in Fig. (2). To adapt such structure to beam equations the structure should be replaced by an idealized model Fig. (3), which is in turn transformed to the mathematical model shown in Fig. (4).

4 - DERIYALION OF THE EREQUENCY EOMATION:

As shown in Fig. (4), the mathematical model of the machine comprises five beams. Accordingly the general solution of the beam equation (10) could be written in the following general form:

Substituting the end conditions of the different beams into equation (1) yields:-
$\begin{array}{ll}c_{21}+c_{41} & =0 \\ c_{11}+c_{31} & =0\end{array}$
$\sin z_{4} C_{14}+\cos z_{4} C_{24}-\sinh z_{4} C_{34}-\cosh z_{4} C_{44}=0 \ldots \ldots . .(4)$
$\cos z_{4} C_{14}-\sin z_{4} C_{24}-\cosh z_{4} C_{34}-\sinh z_{4} C_{44}=0 \ldots . .$. (S)
(rt) \ldots...... $\quad 0=\quad s \eta_{0} s z_{\alpha}+s z_{0} s z_{\alpha}$ -
10
$\left(\varepsilon_{0}+{ }^{s I_{2}}\right)^{s_{2}}=$
(2)

$c_{23}+c_{43}=0$
$a_{1}\left(\cos z_{1} C_{11}-\sin z_{1} C_{21}+\cosh z_{1} C_{31}+\sinh z_{1} C_{41}\right)$ $=a_{2}\left(C_{12}+C_{32}\right)$
$a_{2}\left(C_{12}+C_{32}\right)=a_{3}\left(C_{13}+C_{33}\right)$
which could be written in the following form:
$C_{12}+C_{32}-B_{23} C_{13}-B_{23} C_{33}=0$
E I $1_{1} a_{1}^{2}\left(-\sin z_{1} c_{11}-\cos z_{1} C_{21}+\sinh z_{1} C_{31}+\cosh z_{1} C_{41}\right)$
$-E I_{2} a_{2}^{2}\left(-C_{22}+C_{42}\right)=E I_{3} a_{3}^{2}\left(-C_{23}+C_{43}\right) \ldots \ldots$ (20)
$E I_{2} a_{1}^{3}\left(-\cos z_{1} C_{11}+\sin z_{1} C_{21}+\cosh z_{1} C_{31}+\sinh z_{1} C_{41}\right)$ $-E I_{2} a_{2}^{3}\left(-C_{12}+C_{32}\right)=-M_{1} w^{2}\left(C_{22}+C_{42}\right)$

Equations (8), (10), (9), (11), (16), (20), (18) and (21) could be replaced by equations $(\overline{8}),(\overline{10}) \ldots$. by combining each two successive equations. This gives:-
$\sin 2_{3} C_{13}+\cos 2_{3} C_{23}+\beta_{34} C_{24}+\alpha_{34} C_{34} \quad=0 \quad$ ($\overline{8}$)
$\sinh z_{3} c_{33}+\cosh z_{3} c_{43}+\frac{\alpha}{34} c_{24}+\beta_{34} c_{44}=0 \quad$ ((10)
$\cos z_{3} c_{13}-\sin z_{3} c_{23}+\Delta_{34} c_{14}+\gamma_{34} c_{34}=0$
$\cosh z_{3} c_{33}+\sinh 2_{3} c_{43}+\gamma_{34} c_{14}+\Delta_{34} c_{34}=0$
$\sin z_{1} c_{11}+\cos z_{1} c_{21}+\beta_{12} c_{22}+\alpha_{12} c_{42}$

$$
\begin{equation*}
-D_{12} D_{23} C_{23} \quad=0 \tag{16}
\end{equation*}
$$

$\sinh z_{1} c_{31}+\cosh z_{1} c_{41}+\alpha_{12} c_{22}+\beta_{12} c_{42}$

$$
\begin{equation*}
+D_{12} D_{23} C_{23} \quad=0 \tag{20}
\end{equation*}
$$

$\cos z_{1} C_{11}-\sin z_{1} C_{21}+\Delta_{12} C_{12}-R_{1} Z_{1} c_{22}$

$$
\begin{equation*}
+\gamma_{12} c_{32}-R_{1} z_{1} c_{42}=0 \tag{18}
\end{equation*}
$$

$\cosh 2_{1} c_{31}+\sinh z_{1} c_{41}-\gamma_{12} c_{12}+R_{1} z_{1} c_{22}$

$$
\begin{equation*}
+\Delta_{12} c_{32}+R_{1} 2_{1} c_{42} \quad=0 \tag{21}
\end{equation*}
$$

where;
$a_{r}=\frac{z_{r}}{L_{r}}$
$B_{r(r+1)}=\frac{a_{r+1}}{a_{r}}$
$D_{r(r+1)}=B_{r(r+1)}^{2} \cdot \frac{I_{r+1}}{I_{r}}$
$\alpha_{r(r+3)}=0.5\left(D_{r(r+1)}-1\right)$
$\beta_{r(r+1)}=-\left(\alpha_{r(r+1)}+1\right)=-0.5\left(0_{r(r+1)}+1\right)$
$\gamma_{r(r+1)}=\alpha_{r(r+1)} \cdot B_{r(r+1)}$
$\Delta_{r(r+1)}=\beta_{r(r+1)} \cdot B_{r(r+1)}$
$R_{1}=\frac{M_{1}}{2 m_{1}}$
Simplifying equation (15) by the following substitution:
$u=\cos z_{2}+R_{2} z_{2} \sin z_{2}$
$v=-\sin z_{2}+R_{2} z_{2} \cos z_{2}$
$w=-\cosh z_{2}+R_{2} z_{2} \sinh z_{2}$
$x=-\sinh z_{2}+R_{2} z_{2} \cosh z_{2}$
where

$$
\frac{m_{5} w^{2}}{E I_{2} a_{2}^{3}}=\frac{m_{5}}{m_{2}} z_{2}=R_{2} z_{2}
$$

gives

$$
\begin{aligned}
& v c_{12}+V c_{22}+w c_{32}+X c_{42}=0 \\
& \text {.........(15) } \\
& \text { Equations from (2) to (7), from (8) to (11), from (12) to } \\
& \text { (14), (15), (16), (27), (18), (19), (20) and (21) form a set of } \\
& \text { equations containing the unknown constants } C_{11}, C_{12}, \ldots, C_{45} \\
& \text { and their unknown coefficients. Since the values of these con- } \\
& \text { stants are not zero, hence the set of equations yield to the } \\
& \text { frequency equation in the form of 20th order deterimant, after } \\
& \text { reduction to } 17 \text { th order and rearrangement the determinant equat- } \\
& \text { ion (22) is established. }
\end{aligned}
$$

$$
\begin{array}{lllll}
\because & 0_{0}^{N} & N^{N} & N_{0}^{N} & 0
\end{array}
$$

The values of z_{2}, z_{3}, Z_{4} and z_{5} could be determined in terms of z_{1} from the equation (2): $z_{r+1}=z_{r} \cdot \frac{L_{r+1}}{L_{r}} \quad B_{r(r+1)}$.

Substituting these values into equation (22) yields the frequency equation in terms of z_{1} alone.

5 - THE NATURAL FREQUENCIES AND MODERFORMS OF THE CONSIDERER MACHINE:

The different natural frequencies of the machine could be determined from the following equation ${ }^{(2)}$:

$$
\mathrm{f}=\frac{\mathrm{z}_{1}^{2}}{2 \pi L_{1}^{2}} / \frac{\sqrt{E I_{1} g}}{\rho_{1}} \quad \text { cPs }
$$

by substituting the different values of (21). The corresponding modeforms of the machine could be determined by calculating the deflection of each beam using equation (1). For this purpose the values of $C_{11}, C_{21}, \ldots, C_{45}$ should be evaluated. This could be done by solying the set of equations given in section (4). This set of equations could be first reduced to nineteen equations by omitting the last equation and substituting $C_{1 l}=1$. The moderform is only found on a relative basis, so that all the modeform is only found on a relative basis, so that all the modeform equation (1) can be multiplied on the r ight-hand side by the same arbitrary constant $\neq 0$.

6 - THE BASIC MODEL OF THE MACHINE AND IHE SUGGESTED MODIFICATIONS:

The basic model of the machine is shown in Fig. (2). Four modifications are suggested and shown in Figs (5), (6), (7) and (8). All modifications are done in such a way that the column of the machine has the same mass, beight and wall thickress, whilst the dimensions and weights of the table and overarm are kept constant. In the first modification the column has vertical sides and tapered back, whilst in the second the column assumes squared cross-section. In the third and fourth modifications the back side wall is given a circular shape. The
idealized models of the four suggested modifications are shown in Figs. (9), (10), (11) and (12).

The configuration of the overarm of the machine is also investigated. Five different cross-sectional alternative shapes of the overarm are suggested and shown in Fig. (13). The five suggested overarms have the same mass and length.

The investigation of the dynamic behaviour of the basic and suggested models will be done in the following way:-

1. The natural frequencies and modeforms of the basic model will be first determined and considered as basic data.
2. The natural frequencies and moderforms of each of the suggested modifications will be measured and compared with the basic data in order to evaluate their effects. In this way the suggested model which will have the superior properties will be detected.
3. The dynamic behaviour of the superior model will be further investigated by changing its overarm in the sequence shown in Fig. (13).

7 -RESULTS. DISCUSSIOH AND CONCLUSIONS:

The results of this investigation are tabluated and plotted in the form shown hereafter.

Table (1) shows the characteristics of the basic model of the machine, while tables (2) to (5) show the characteristics of each suggested modification. Tables (6) to (9) give the results of comparison between the characteristics of the suggested modifications and the basic model, which show that the third and fourth suggested modified models are superior than the basic.

The characteristics of the third modified model when equipped with the different suggested shapes of overaras, shown in Fig. (13), are included in tables (10) to (14). Tables (25) to (19) show the results of comparison between the characteristics of this model, when equipped with the different overarm shapes, with its basic model. The basic model in this case will be the third modified model equipped with the original overarm as it
is shown in Fig. (7). Hence the results given in table (4) will be the basic data. Tables (15) to (19) show that the third modification equipped with overarm possessing the second and/or the fifth shapes gives the best results. These two combinations will be termed (III - 2) and (III - 5).

Tables (20) to (24) are concerned with the characteristics of the fourth modification when equipped with the different suggested shapes of overarms, whilst tables (25) to (29) give the results of comparison between its characteristics and that of its basic model. The basic model in this case will be the fourth modification equipped with the original overarm as it is shown in Fig, (8), and its data given in table (5) will be considered as basic data. The results of comparison show that the fourth modification equipped with overarm possessing the second and/or the fifth shapes gives the best results. These two combinations will be termed (IV - 2) and (IV - 5).

The main results of this investigation are sumarized in Figs (14) to (28). These figures compare the characteristics of the basic model of the machine with those of the four best models, namely, (III - 2), (III - 5), (IV - 2) and (IV - 5). Regarding the moderforms, the best four models behave approximately in the same manner, as it is shown in Fig. (14), and from Figs (15) to (17) which show the deflections of the main parts of each model at the different modes. However, the modified model (III - 2) may be the best one, in the sense that, it ensures, the minimum deflection and hence the maximum rigidity. The percentage reduction in the deflection of the main parts of that model is given in Fig. (18), which shows how far the deflection of each part of the suggested model is reduced in comparison with those of the basic model.

The percentage reduction reachs 21 for the column, 23: for the table and 718 for the ovexarm. Further investigation on prototype scale seems to be necessary in order to indentify securely the suggested model which could be recommended.

Regarding the magnitude of the natural frequencies, it could be seen that, the first natural frequencies of the best model
range from 203 to $221 \mathrm{C} / \mathrm{s}$ compared to $181 \mathrm{C} / \mathrm{S}$ for the basic model of the machine. This gives a mean increase of about $31 \mathrm{C} / \mathrm{S}$ corresponding to 1860 r.p.m., which makes the first natural frequencies of the suggested models far away, with an example space, from the working range of the machine.

In order to visualize the individual effects of the column and hence the overarm, the set of results illustrated in Figs (19) to (22) is presented. Figs (19) to (20) compare the deflections of the different main parts of the basic, third and fourth suggested models when equipped with the original overarm. On the other hand, Fig. (22) indicates the percentage reduction reachs 48 for the column, 98 for the table and 28% for the overarm.

From the presented results and discussion the following main conclusions could be drawn:-

1. When the model mass and main dimensions are kept constant, the rigidity of a machine tool structure could be increased by altering its configuration. The optimum configuration could be detected by checking the various alternative possm ible shapes of its main parts.
2. For the purpose of checking the different possible configurations of a machine tool structure, the classical beam theory may be one of the useful tools.
3. The four suggested models for the considered milling machine exhibit reduced deformation and increased natural frequency.
4. The percentage reduction in deformation of the suggested models amounts to 21% for the column, 23% for the table and 71% for the overarm. The natural frequency increased by about $31 \mathrm{c} / \mathrm{s}$.
5. Rounding the back-side of the column and/or the overarm yield considerable improvement of the dynamic characteristics of the milling machine.
6. Rounding the back-side of the column of the horizontal milling machine while keeping the other parts having the original shapes resuits in reducing the deflection by about 48 for the column, 98 for the table and 28 for the overarm.

NOMENCLATURE

${ }^{A}{ }_{r}$	Cross-sectional area.
${ }^{\text {a }}$ r	Frequency constant.
$\mathrm{B}_{r(r+1)}$	Area constant.
$C_{1 r}, C_{2 r}$,	Boundary constants.
E	Modulus of elasticity.
E I	Flexural rigidity.
f	Frequency.
9	Acceleration of gravity.
I_{r}	Moment of inertia of area.
L_{r}	Length.
m_{r}	Mass.
$\mathrm{R}_{1}, \mathrm{R}_{2}$	Masses ratio.
r	Subscript taking the values 1,2, ...,5 and indicates the number of beam.
w	Circular frequency.
X_{r}	Abscissa.
y_{r}	Ordinate.
${ }_{2}$	frequency constant.
	Density of beam material.
$\rho_{\text {A }}$	Mass per unit length.

REFERENCES

1. S.Taylor and S.A. Tobias, "Iumped - constants method for the prediction of the vibration characteristics of machine tool atructures". Proc. 5th Inter. M.T.D.R. Conference, 1964, pp. 37-52.
2. J.C.Maltbaek, "Classical beam method for the prediction of vibration characteristics of machine structures", Proc. 5th Inter. H.T.D.R. Conference, 1964, pp.23-35.
3. A. Cowley, "Analysis of machine tool structure by computing techniques", Proc. Inter. M.T.D.R. Conference, 1967, pp. 119-137.
4. S. Taylor, "A computer analysis of an openside planing machine", Proc. Inter. M.T.D.R. Conference, 1965, pp. 197-206.
5. S. Taylor, "The design of machine tool structures using a digital computer", Proc. Inter. M.T.D.R. Conference, 1966, pp. 369-383.
6. S. Taylor, "Compater aided design of a planing machine structuren, Proc. Inter. M.T.D.R. Conference, 1968, pp. 739-750.
7. A.C. Stephen and S. Taylor, "Computer analysis of machine tool structures by the finite element method", proc. Inter. M.T.D.R. Conference, 1968, pp. 751-761.
8. H. Optiz and R. Noppen, "Evaluation of computer aided methods for the design of machine tool structures". Ann. CIRP, Vol. 2212, 1973, pp. 227-231.
9. A. El Hakim and 2. Magdedurg, "Application of classical beam theory of investigation of natural frequencicles Maschinenbautechnik, 1970, pp. 537-539.
10. S. Timoshenko, "Vibration problems in engineering", 3rd ed. Van Nostrand, New York (1955).

$\begin{aligned} & \dot{\circ} \\ & \dot{\sim} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \dot{\Sigma} \end{aligned}$	z_{1}	$\begin{gathered} f \\ c / s \end{gathered}$	Deflections																								
			Beam 1					Beam 2					Beam 3					Beam 4					Beam 5				
			X_{1} / L_{1}					X_{2} / L_{2}					X_{3} / L_{3}					X_{4} / L_{4}					X_{5} / L_{5}				
			0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1	0	-25	0.5	0.75	1	0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1
${ }_{1} 5$	0.81	11.9	0	0.09	0.35	0.76	1.31	1.31	1.98	2.75	3.62	4.59		0.3	0.6	0.91	1.21	1.21	1.52	1.83	2.14	2.46	0	4.19	13.03	21.27	36.25
2 Cl	07	300	0	0.08	0.29	0.6	0.97	0.97	1.36	1.73	2.08	2.41	0	0.19	0.39	0.59	0.8	0.8	1.02	1.23	1.45	1.67	0	0.16	0.04	-0.25	-0.36
3	1.85	896.8	0	0.13	0.4	0.61	0.59	0.59	0.44	0.33	0.25	0.19	0	-0.15	0.4	-0.76	-1.17	-1.17	-1.65	-2.2	-2.76	-3.36	0	0.58	1.24	0.84	-0.5

dification

$5 / 35: 1612 \mathrm{l}$
دpow pouawopuny

Table (3) Modeforms and natural frequencies of the second modification

Table (5) Modeforms and natural frequencies of the fourth modification
Initial position.
Modeforms.
?

Mode number		Deflection ratios																								
		Beam 1					Beam 2					Beam 3					Beam 4					Beam 5				
		$X_{1} L_{1}$					X_{2} / L_{2}					X_{3} / L_{3}					X_{4} / L_{4}					X_{5} / L_{5}				
		0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1
$1{ }^{\text {st }}$ mode	1.02	0	1	1.03	1.03	1.02	1.02	1.01	1.01	1.01	1.01	0	0.93	0.93	0.93	0.96	0.94	0.94	0.95	0.95	0.93	0	0.79	0.76	0.75	0.74
2 mode	0.86	0	1	1.03	1.01	1.01	1.01	1	0.98	0.97	0.95	0	0.9	0.9	0.89	0.88	0.88	0.88	0.88	0.87	0.86	0		-2.79	4.47	2.63
3 mode	0.99	0	1.27	1.2	1.12	0.96	0.96	0.68	0.46	0.21	-0.4	0	1.7	1.29	1.22	1.22	1.22	1.18	1.15	1.13	1.11	0	-0.33	-0.37	-0.3	-0.73

Table (6) Comparison between the first modification and basic model.
-68-

Mode number		Jeflection ratios																								
		Beam 1					Beam 2					Beam 3					Beam 4					Beam 5				
		$\chi_{1} \Lambda_{1}$					X_{2} / L_{2}					X_{3} / L_{3}					X_{4} / L_{4}					X_{5} / L_{5}				
		0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1
$1{ }^{51}$ mode	0.95	0	1	1.03	1.03	1.02	1.02	1.02	1.02	1.02	1.0:	0	1	0.98	0.98	0.98	0.98	0.99	0.98	0.98	0.98	0	0.93	0.91	0.91	0.9
2 mode	0.95	0	1	1.03	1.01	1.01	1.01	1.01	1	1	0.99	0	0.95	0.95	1.07	0.94	0.94	1.06	0.93	0.93	0.93	0	089	0.44	1.47	1.23
$3^{\text {rd }}$ mode	1.04	0	1.18	1.14	1.09	1	1	0.86	0.8	089	1.58	0	1.5	1.32	1.29	1.24	1.24	1.23	1.22	1.21	1.2	0	-0.57	-0.59	-0.54	-1.34

Table(7) Comparison between the second modification and basic model
-

ןəpow J!SDq pud UO! DD!

$\begin{aligned} & 0 \\ & \varepsilon \\ & \frac{8}{2} \end{aligned}$	z_{1}		De:lections																								
			Beam 1					Beam 2					Buam 3					Beam 4					Beam 5				
			X_{1} / L_{1}					X_{2} / L_{2}					$\mathrm{X}_{3} / \mathrm{L}_{3}$					X_{4} / L_{4}					X_{5} / L_{5}				
			0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1	0	$\therefore .25$	0.5	0.75	1	0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1
1	0.81	161.2	0	0.09	0.35	0.75	1.3	1.3	1.96	2.73	3.59	4.55	0	0.28	0.57	0.87	1.16	1.16	1.45	1.75	2.05	2.34	0	4.16	12.96	26.96	36.13
2	1.07	281.3	0	0.08	0.29	0.6	0.97	0.97	1.35	1.72	2.06	7.39	0	C. 18	0.37	0.57	10.76	0.76	0.96	1.17	:.37	1.58	0	0.15	0.02	-0.28	-0.67
	1.85	877.5	0	0.14	0.41	0.61	0.57	0.57	0.37	0.2	0.04	0.13	0	- 3.16	-0.41	-0.73	-1.12	-1.12	-1.55	-2,44	-2.56	-3.08	0	-0.43	-0.63	-0.27	0.65

verarm
$-70-$

$$
5 / 0 \quad 6.60 z=\frac{1}{1}
$$

$$
\begin{aligned}
& n \\
& 5 \\
& 0 \\
& 0 \\
& 0 \\
& 3 \\
& 0 \\
& 0 \\
& 3 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$\begin{aligned} & \dot{0} \\ & \mathrm{C} \\ & \dot{O} \\ & \mathrm{D} \\ & \mathrm{D} \end{aligned}$	z_{1}	$\left\lvert\, \begin{gathered} f \\ c / s \end{gathered}\right.$	Defiections																								
			Beam 1					Beam 2					Beam 3					Beam 4					Beam 5				
			X_{1} / L_{1}					X_{2} / L_{2}					X_{3} / L_{3}					X_{4} / L_{4}					X_{5} / L_{5}				
			0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1
, st	0.83	196-2	0	0.09	0.34	0.74	1.27	1.27	1.91	2.64	3.46	4.37	0	0.20	0.56	0.84	1.12	1.12	1.41	1.7	1.90	2.28	0	3.51	10.77	19.99	29.82
$2^{\text {nd }}$	1.08	286.5	0	0.08	0.29	0.59	0.96	0.96	1.33	1.68	2.01	2.31	0	0.8	0.37	0.56	0.75	0.75	0.95	1.15	1.35	1.55	0		-035	-0.95	-1.6
$3{ }^{3}$	1.89	877.5	0	0.14	0.41	0.61	0.57	0.57	0.37	0.2	0.04	0.13	0	-0.16	-0.6	-0.73	-1.12	-1.12	-1.55	-2,04	-2.66	-3.08	0	-0.4	-0.67	-0.33	0.47

Table(23) the third modification equipped with the fourth overarm
Initiat position
\longrightarrow Mocieforms.

$\begin{gathered} 620- \\ 9 \varepsilon \cdot 0 \\ 2 \varepsilon .0 \end{gathered}$	$9 \% 1$ 68.1 7%	280	28\%	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	1 560 780	1 56.0 58.0	1 56.0 580	1 560 78.0		1 76.0 58.0	10.1 780 78.0	1 760 78.0	1 76.0 28.0	0 0	$20{ }^{\circ}$ 76.0 180	5 2.0		1 98.0 98.0	$\begin{gathered} 1 \\ 960 \\ \angle 8 \cdot 0 \end{gathered}$	1 960 400	1 860 68.0	1 96.0 16.0	1 1 800	0	20.1	-pous ${ }_{p+1}^{2}$
1	51.0	so	92°	0	1	520	so	sz'0	0	1	510	50	92.0	0	1	55°	$5 \cdot 0$	52°	0	1	920	50	52°	0		əpqunu\|
${ }^{5} 7 /{ }^{5} \mathrm{X}$							$7{ }^{7} \mathrm{X}$					$\overline{1}^{\text {E }}$					$\%^{2} \mathrm{X}$					$1 / \mathrm{x}$				
G undeg					7 mbag					ε WDa:						2 unag				1 wDog						
Solfod UOlf																										

Mode number		Deflection ratios																								
		Beam 1					Beam 2					Beam 3					Beam 4					Beam 5				
		X_{1} / L_{1}					X_{2} / L_{2}					X_{3} / L_{3}					X_{4} / L_{4}					$X_{5} \Lambda_{5}$				
		0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1
${ }^{5}$ tmode	0.97	0	1	1	1.01	1.01	201	1.01	1.02	1.02	1.02	0	1	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	0	1.12	1.13	1.13	1.13
2 mode	1	0	1	1	1.01	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0	0.66	109	1.05	1.04
$3^{\text {rct mode }}$	i	0	1	1	1	1.	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0	1.05	1.03	0.88	1.26

प!!м padd!nbə ио!fDэ!!

	.	25% $\angle 8 \%$ 770	260	780	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	1 96.0 98.0	[$\begin{gathered}1 \\ 560 \\ 98.0\end{gathered}$	1 56.0 98.0	1 960 98.0	960 980	1 960 $98 \cdot 0$	10.1 76.0 98.0	1 750 980	($\begin{gathered}1 \\ 760 \\ 98.0\end{gathered}$	0	20.1 760 880			1 4.60 4.0	\bullet 660 680	1 26.0 680	1 860 6.0	1 96.0 16.0	1 1 680	0 0 0	1	
	1	54.0	50	520	0	1	54.0	5.0	920	0	:	$5 \mathrm{sc}^{\circ}$	50	920	0	1	56°	so	52°	0	1	96.0	90	52°	0		$\left\|\begin{array}{l} \text { aquirun } \\ \text { əpow } \end{array}\right\|$
${ }^{5} 7 /{ }^{3} \mathrm{X}$						$7 /^{7} \mathrm{x}$					$7{ }^{2} \mathrm{x}$					${ }^{2} 7 f^{2} x$							$7 \%^{1}$				
						7 UDag							Unag			2 moag					1 undag						

Table (20) the fourth modification equipped with the first overarm

Table(23) the fourth modification equipped with the fourth overarm
momementiol fosition.
Secord mode
c / S
$f=305.7$

-82-

Mode number		Deflection ratios																								
		Beam 1					Beam 2					Beam 3					Beam 4					Beam 5				
		X_{1} / L_{1}					$\mathrm{X}_{2} \mathrm{~L}_{2}$					$\mathrm{X}_{3} 几_{3}$					X_{4} / L_{4}					X_{5} / L_{5}				
		0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1	0	0.25	6.5	0.75	1	0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1
$1{ }^{\text {s }}$ mode	0.93	0	1.12	8.03	1.03	1.03		1.05	1.0	1.05	2.06	0	1.013	1.03	1.04	1.04	1.04	1.04	1.04	1.04	1.04	0	1.26	1.27	1.28	1.29
2 'mode	0.98	0	1	1	1	1.01	1.01	1.01	102	1.02	1.03	0	1	1.02	1.01	1.02	1.02	1.02	1.01	1.02	1.02	0	4	-0.63	-0.05	0.23
3 mode	1	0	1	1	1	1	1	1	1	'	1	0	1	'	1	1	1	1	1	1	1	0	0.75	2	1	0.86

Table (25)Comparison between the fourth modification equipped with
-83-

-84-
Comparison between the fourth modification equipped with
the third overarm with its basic model.

Mode number		Deflection ratios																								
		Beam 1					Beam 2					Beam 3					Beam 4					Beam 5				
		X_{1} / L_{1}					X_{2} / L_{2}					X_{3} / L_{3}					$X_{4} \Lambda_{4}$					X_{5} / L_{5}				
		0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1	0	0.25	0.5	0.75	1
$1{ }^{51}$ mode	0.97	0	1.12	1.63	1	1.61	1.01	1.02	102	1.02	1.02	0	1	1.02	1.01	1.01	1.01	1.01	1.01	1.01	1.01	0	1.05	1.06	1.06	1.06
$2^{\text {nquade }}$	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0	1	1.07	1.04	1.02
3 mode	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	093

Table(2 a , Comparison between the fourth modification equipped with
the fourth overarm with its basic model.

- $\vec{\sim}$	Frequency tatios.		
$\bigcirc 0$			
- 0			
- \% \% \%			
-			
\% \% \%			
\% \% \%			
\%			
- 8			
- ${ }^{\circ} \mathrm{i}$			
-			\bigcirc
- 0	-		
- 8	${ }^{\circ}$		
-	in		
¢ ${ }^{\circ}$	[0	ω	$\stackrel{\square}{\square}$
(1)	\square		0
"	\bigcirc	$\ll \begin{aligned} & \text { D } \\ & 0 \\ & \frac{0}{3} \\ & \wedge \end{aligned}$	
-			
"-8			
$\overrightarrow{\mathrm{O}}$ -	8		
- ${ }_{6}$	-		
- 0	-		
\%	$\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right]$		
- ${ }^{2}$	6		
\cdots	9		
	-		

Fig. (1)
Main parts and dimensions of the horizontal knee_type milling machine.

-68-

Fig.(3)

Fig. (4)
Mathemalical model

(G)

-90-

Fig. (6)

Model of the second modification

- Uo!foj!!!pow pa!t out 10 jopow (L) ${ }^{5}$

Fig. (8)

Model of the fourth modification.

(6) $\cdot 6!$

The basic eross.section
(Trapejoid)

The second modification
(Square)

Dimensions in Mm.

$$
\text { Scale } 1: 1
$$

The fourth modification
(Semi-Circular on rectanglar base)

The first modificalion
(Rectangle)

The third modification
(Semi-Circle)

The fifth modification (Semi-Circular tail)

Fig. (13)

Different Cross-Sectional atternative shapes of the overarm.

$$
\begin{aligned}
& f_{\text {bosic }}=181.5 \\
& f\left(I_{-2}\right)=207.9 \\
& f\left(I_{-2}\right)=221.1
\end{aligned}
$$

ヶ६OZ $=(\varsigma-$ III) $)$
sustofpou lolupuppung (0

(First mode)

Fig.(17) Deflections of the main parst of the basic model and best modifications
(Third Inode)

(First mode)
apou puozas)

Fig. (22) Deflection of the main parts of basic, third and fourth modifications.
(third mode).

- Iapow गspa alll पi!M parodmos so

\%. Reduction

MATHEMATICAL SIMULATION：OF
MACHINE TOOL STRUCTURES

 الوزن ،الأبعاد ، السمك رالكـلـة

الدراسة المتدهة بينت المكا ن توقع الحاللة الديتالمكية لمعـظم الهباكل الملائـــــة －مالثالى المكان على التحسبنات المكيكة لمها

