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ABSTRACT 

The problem of heat conduction in a semi-infinite macro-periodic 

layered media is treated by applying the effective modulus model. This 

model describes the micro-morphic effects o r  the effects due to the 

micro-periodic structure of the rigid body on the transient heat 

conduction. In such model the pioblem is described by two coupled 

partial differential equations. The Laplace transformation with respect 

to the time is used to solve these equations. Inversion of the resulting 

expressions is carried out using the convolution theorem. Two different 

problems have been solved. The first problem is of the first kind of the 

boundary conditions while the second problem is of the second kind. 

Numerical analysis of the obtained solutions is also presented for  two 

different kinds of two alternating layers. 

INTRODUCTION 
The study of heat conduction through multilayered media seized a 

great attention during the last two decades. This is due to the numerous 

applications in engineering fields such as design of the wall of industrial 
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furnaces, rocltbcds, chemical reactors, nuclear reactor and 

constructions. 

A variety of purely numerical methods have handled successfully the 

heat flow calculation in multilayered mediums. Nevertheless, analytical 

approaches remain of interest to designcrs since thcy give more 

synthetic insight into the influence of each parameter. The analytical 

methods are generally based on separation of variables in the heat 

equation, Green's functions and integral transformation (Fourier and 

Laplace transformations) [I ,  21. 

Many papers have been presented to study heat conduction problems 

in periodic laminated composite. Furmanski [3] studied the hcat 

conduction in a two-component medium for both regular (periodic) or  

irregular (chaotic) inner structure of the medium. The cncrgy balance 

equation which describes the heat transfer processes in two components 

was derived using the ensemble-averaging technique. Some esanlplcs of 

application of tlle theory are presented in calculation of the interaction 

coefficient for different kind of coni~osite materials (periodic laminated 

composite, composite reinforced with unidirectionally aligned fibbers 

and composite with dispersion of spherical inclusions). 

Auriault et al. [4] presented a macroscopic modeling of heat transfer 

in periodic composites in the presence of interfacial thermal resistance 

.The method of double-scale asymptotic developments is used to 

determine the interfacial thermal resistance. Five characteristic cases 

are considered related to different relative values of the barrier 

resistance to the resistance of the components. The first three models 

are one-temperature field models whereas the last two are two- 

temperature field models. To illustrate the five corresponding 
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macroscopic models, a layered medium is investigated which permits 

analytical results. 

Wozniak et. al. [S, 61 presented a new approach to modelling of 

nonstationary heat conduction problems in micro-periodic composites. 

The refined averaged model of a rigid heat conductor with micro- 

periodic structure is formulated. This model describes the effect of a 

microstructure length dimension in the time-dependent heat transfer 

problems. 

Ignaczak et. al. [7] proposed a formulation for one-dimensional 

boundary value problem for a periodically layered plate using the 

refined averaged heat conduction theo~y.  The uniqueness theorem for 

the problem is proved under the sufficient condition upon which the 

second law of thermodynamics is satisfied for the smeared layer 

problem and using a global thermal energy conservation law associated 

with the problem. Also, solutions of two particular initial boundaiy 

value problems are presented. One of the two particular solutions 

represents a temperature field in the layered semispace due to sudden 

heating of the boundary plane, while the other stands for a temperature 

field in the semispace produced by a laser surface heating. 

Matysiak et. al. [8] considered the problem of transient heat 

conduction in a periodically stratified medium consisting of a large 

number of alternating concentric cylinders of two homogeneous 

isotropic rigid materials and in a rotationally periodic cylinder 

consisting of a large number of circular homogeneous isotropic rigid 

sectors. The equation of the homogenized models with microlocal 

parameters are  derived taking into account certain microlocal effects 

connected with the microperiodic structure of the considered 
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composites. Some problems of temperature distribution in composite 

cylinders are  considerecl as an application to the presented.models. 

The problenl of heat condition in a half-space medium consisting of n 

periodic two alternating layers is considered by El-Zebidy [9]. The 

problem is treated in frame of the refined averaged theory. The solution 

for the temperature distributiol~ is obtained by using Laplace 

transformation technique. Inversion of the resulting expression is 

carried out using the residues theorem. Numerical analysis of obtained 

solutions of the problem is also presented for born-epoxy layers. 

In this paper, the problenl of lieat conduction in a semi-infinite 

periodically multilayered medium is solved in frame of effective 

modulus theory. Section two contains the basic equations of the effective 

modulus theory. In  section three, we present a solution of the problem 

of heat conduction in a semi-infinite periodically multilayered 

composite subjected to a boundary condition of the first kind. In section 

four the same problenl which presented in section three is solved but 

the boundary condition is of the second kind. In section five, a 

numerical analysis and conclusions of the solutions of the two problems 

are presented. 

THE EFFECTIVE MODULUS MODEL 
The effective modulus model theory [lo] takes into account certain 

micromorfic effects resulting from the fine periodic structure of the 

body. If we consider a rigid body occupies a regular region R in the 

Euclidean 3-space referred to Cartesian coordinates system. The 

Cartesian coordinates of points of R will be denoted by 

x = (xi), i = 1,2,3. We also introduce in SL a system of curvilinear 

coordinates X = (Xa), a = 1,2,3. Setting x = x(X) , X E: R, where Q, is 
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a regular region in R ~ .  Functions x(.) = (xi(.)) are  assumed to be single 

valued and continuously differentiable except possibly at  some points, 

lines and surfaces. 

Let B(X,t) = T(X,t)+To, t E R be the absolute temperature field 

defined in Q, where To is known constant reference temperature. Also 

let A(X) = (AXX)) be a matrix inverse to Vx(X) = (x,; (X)) . Thc heat 

flux relation a t  x = x(X) and a t  a time instant t will be assumed in thc 

form 

hi (X, t) = K' (X, T(X, t)) A; (X)T, (X, t), 

where K . )  = K . )  are the known components of the thermal 

.I conductivity tensor. The curvilinear coordinates X = ( X u )  E Q R  will be 
assumed that they are related to a free energy function p(X,T(X,t)) 
and the heat generation g(X, T(X, t), t)  . 
Define 

IKuP (X, T) = AIff (x) A: (x)K' (X, T) , 

The energy conservation principle has the form: 

where ,LL(x,~) is the entropy, the vertical line stands for the covariant 
differentiation in the metric tensor 

G(X)  up ('1) = ('2 (x)) x E Q R  9 

Esq. (2.1), (2.2) are  assumed to hold almost every where in 0 (i.e. for 
a.e. X E Q K  for which K ~ ( x , ~ )  are defined) and for everyt E X . 
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Let (51,5 ' ,53) be a triplet of positive nunibcrs, and define 

5, 5 (6Ac1, 625" ,6:t3), a = 1,2,3. In  order to espress. the concept 
"micro-periodic" medium, the following conditions will be assumed 
1- For evely Z E Q R  , such that Z + 5, E Q ,  , we havc 

where p(X),  X E Q, is the mass density. 

2- The masinium distance d(n(X), s (X  + <,)), X E a, , is much smaller 

tlinn 1, 

whcrc I, is the smallest characteristic length dimension of region R, 
in R' . 
3- For every AX=(AX' ,AX~,AX') ,  such that l A X a l < ~ u 7 ~ = 1 , 2 , 3 ,  

then 

x(X + AX) z x(X) + Vx(X)AX , 
holds in Q, . 
Under aforementioned conditions the body under consideration will bc 
called a niicroperiodic composite. I t  has to be emphasized that a term 
"periodic" is related to curvilinear coordinates X = (X"). 

Thc effective modulus model is based on the assumption that the 
temperature field has the form 

where the functions qa(.), which called shape functions are known 
continuous and differentiable almost everywhere functions, such that 
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The function TO( . , t )  is called macro-temperature and the functions 

Ta (.,t) are  called the micromorphic parameters. 

Let X ,  = (x,") be an arbitrary but fixed point o f ,  such that 

C ( X o )  := ~ Z E  nRI /za - xal < 0.5Ca,a = 1,2,3} 

is a subset of 0,. The average operator is introduced in the form 

1 
(w(-1) = y IW (WW) (2.5) 

C(X0) 

where V 2 5 '5  2( and ~ v ( z )  = d z ' d ~ ~ d z .  
In this model the The conduction equations after linearization take the 
form [lo] 

where 

g A (x,  t )  = K Aa (x)T ,O (x ,  t )  + L~~ (x,  t ) ~  (x,  I )  , (2.7) 
and 

R " ( X ,  T) = A: (x )  A: (X ) ( kv  (2)) , 

K (x) = A; ( x ) A ~  ( x ) ( k 0  (2, T)v,; (z))  , (2.8) 

L" ( X )  = A,? (x )  A; (X)(k"z)q,t ( 2 ) ~ ~ ;  (2)). 

In the case of an isotropy there is K,"x) = K(X)S  n , ~  E 0, where 

k (X)  is the value of the heat conductivity coefficient. If both systems of 

coordinates (Xa), ( x i )  coincide, then A4 ( x )  = 6" G O ~ ( X )  = 6 @ ,  and 
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coefficients kUP, K ~ ~ ,  L~~ in Eqs. (2.7) and (2.8) are independent of 
X . In this case the governing equations take the form . 

q ~ , ~ ) + g c ( . , ~ ) =  ( p c ) a , ~ O ( ~ , t ) ,  

where 

PERIODICALLY HEATED SURFACE 

Consider one-dimensional problem of composite semi-space with initial * 

temperature equal to zero. The surface temperature is changed to 

T,coswt where T,,w are constant. The medium consists of alternating 

layers of two materials having thermal conductivities k , ,  k,, densities 

p, and p, and specific heat c, and c, respectively. The thickness of the 

first layer is I, and the thickness of the second layer is I,, where 

I  + I ,  = I  is the thickness of the period. 

Solrrtion of the problem 

From Eqs. (2.9), (2.10) we have the governing equations in the form 

with the initial and boundary conditions 

~ O ( x , t )  = ~ ' ( x , t )  = o at t  = 0, 

T O  (x,t)  = ~,coswt  at x = 0, 

TO(x,t)  -+ O as x  + oo, 



SOLUTIONS OF HEAT CONDUCTION PROBLEAIS IN 

then, the Eqs. (3.1), (3.2) take the form 

9' (t, r) + 
h., 4)) 

(~%h,, (ch,, (0 sO(<,r) = 0 ,  
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and the initial and boundary conditions become 

9O({,r) = ~ ' ( 5 , r )  = O at r = 0, 

so (h r )  = cos mi- at < = 0, 

9O(j, r )  + 0 as 5 +a. 
where 

Taking the Laplace transformation to Eqs. (3.4) and (3.5), .tvc have 

and the initial and boundary conditions become 

From Eq (3.6)2 we have 

Eliminating S 1 ( 5 , p )  from Eqs. (3.6), we have 

The solution of eq. (3.10) which satisfies the boundary conditions (3.7) is 
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In order to invcrte the nbovc function to tlic original variable T ~ v c  use 
tlic convolution t1:eorem and tables of the inverse Laplncc 
transformation [12], then we get 

(3.12) 

From Eqs. (3.9) and (3.12) we get 

In the same manner we can obtain $I(<, z) in the form 

Differentiating Eq. (3.12) with respect to 5 ,  we obtain the grntlicnt of 
tlie macro-temperature in the form 

Notice that one can obtain tlie solution for the homogeneous mediu~n 

from the above solution. For the homogeneous medium a, = p, = 0 ,  

from Eq. (3.14) we find that LJ1(5,z) = 0 ,  and the temperature in 

ho~nogeneous medium Sh (c, z) from Eq. (3.12) takes the form 
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which is the temperature in a semi-infinite homogeneous medium has 

the same initial and boundary conditions of this problem. 

TEMPERATURE IN A LAYERED SEMISPACE 
SUBJECT TO STEADY PERIODIC SURFACE 

HEAT FLUX 
Let us consider the same problem treated in section 3  but in this 

problem the initial temperature of the body is & where& is a constant * 

and the surface temperature is subjected to a heat flus given by 
- ( k )  W O Y  t )  = n Q, cosc~t , where n is n controlling factor for steady 

ax 
periodic oscillations and Qo is a constant surface heat flus. 

Solritio~z of tJte yroblenz 

-4s in the Section 3, we have the governing equations in the form 

s ' ( 5 , P ) + P I 9 > ( 5 , r )  = 0 ,  

and the initial and boundary conditions become 

-0 1 
9 ( < , P > = -  a t  r = O ,  

P  

- 0 
9 ( 5 , p )  is finite as 5 + a, 

where a,, P, have the same definition as in section 3 and 
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From Eq (3.15)~ we have 

9' (5, P) = -p1q (5, P) 

Eliminating 9'(5, P) from Eqs. (4.1), yields 

The solution of Eq. (4.4) which satisfies the b o u n d a ~ y  conditions (4.2) is 
7 

I a 0  

where H = --- 
(k(5)) ' 

In  crder to inverte the above function to the original variable '5 we use 
the convolutio~~ thcorem and tables of the i n ~ e r s e  Laplace 
transformation, then we get 

From Eqs. (4.3), (4.6) we get 

I n  the same manner we can obtain 19~(5,z) in the form 

-3 - 

9' (5Y4 = 
PlH5 

( u )  -" ) ros[Ni, (T  - ii)]Qii 
2 Jn(l-a,B) 0 424 - alp, > 
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Differentiating Eq. (4.9) with respect to 5 ,  me obtain the grsdient of the 
macro-temperature in the form 

-5 

Notice that one can obtain the solution for the homogeneous medium 
from the above solution. For the homogeneous mediuni cx, = P, = 0 , 
from Eq. (4.8) we find that G1(t,z) = 0, and the temperature in 

homogeneous nledium G,, (<, I-) from Eq. (4.6) takes the form 
r 
I 

which is the temperature in a semi-infinite homogeneous medium has 

the same initial and boundary conditions of this problem. 

NUMERICAL RESULTS AND CONCLUSIONS 
In this section we present a numerical analysis for the analytical 

solutions obtained in the pervious two sections. I t  is assumed that the 

medium consists of two alternating layers. The thickness of the second 

layer is three times the first layer. Then the shape function given by 

Eqs. (3.3), will take the form 

and so the non-dimensional shape functicn takes the form 
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The numerical results are presented for two types of materials. These 

types are 

1. Boron-Epoxy 

2. Boron-Aluminum 

The physical properties of these materials are presented in table 5.1 and 
I 

\ the numerical values of the parameters a,, p, are presented in table 5.2. 

1 Boron-Epoxy 1 -0.670588235 / -0.859296482 1 

Table 5.1 the physical properties of the nlaterials used in calculations. 

I 

In Figs. 1 

through Figs. 6, the curves labeled with the numbers 1 , 2 , 3  are  referred 

to the values calculated a t  the first, second and third interfaces of the 

Boron- Aluminum 

layers respectively. Figures 1, 2 and 3 are related to the problem of 

I83 

Table 5.2 The numerical values of the parameters used in the effective 
modulus model. 

Substance 

Boron 

Epoxy 

0.326398485 

Conductivity 
k 

caysee cm O C 

7.648 x 10" 

8.365 x lo-' 

Density 
P 

gm/em3 

2.32 

1.14 

2.820238892 

Specific heat 
c 

callgm 'C 

0.2451 

0.4498 
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periodically heated surface while figures 4, 5and 6 are related to the 

problem of steady periodic heat surface heat flux. 

Figs. 1 show the non-dimensional macro-temperature G0(5, r) given 

by Eq. (3.12) versus the non-dimensional time z .  The macro- 

temperature is calculated a t  the first three interfaces of the layers. The 

results obtained for the value w, = 0.1. Figs. 2 illustrate the dependence 

of the total temperature $(<, z) at  the first three interfaces on the non- 

dimensional time r .  Figs. 3 present the variation of the oscillation of 

temperature gradient A$,,(<, r) between adjacent layers with respect to 

the non-dimensional time r . Also, the caIcuIated values are  presented 

at the first three interfaces of the layers. 

In Figs. 3 we present the variation of the non-dimensional macro- 

temperature which is given by Eq. (4.6) with respect to the non- 

dimensional time z. The macro-temperature is calculated a t  the first 

three interfaces of the layers. The results obtained for the value w, = 0.1 

and Q, = 4.7769179 x10-~  ~ a l / ~ e c . c m ~ .  In Figs. 5 the non-dimensional 

total temperature G(5, Z) is plotted as a function of the non-dimensional 

t imer .  The results are given for the values a t  the first three interfaces ~ 
I 

of the layers. Figs. 6 present the variation of the oscillation of 

temperature gradient A$,,(<,r) between adjacent layers with respect to 

the non-dimensional time r . The calculated values are presented at  the 

first three interfaces of the layers. 

The main feature of the effective modulus model is that it describes 

the micro-morphic effects in a temperature distribution due to micro- 

periodic structure of the body. From the numerical results which are 

presented in figures 1-6 we can coclude that 

o For the laminate consists of materials of low thermal 

conductivity, the values of the total temperature is very close to 



the values of the macro-temperature 9' (6, z) and then the 

values of the 9'(5, z) are very small and can be neglected. But 

this is not true for the laminate, which contains at  least one 

material of high thermal conductivity, where we note that the 

values of 9' ( 4 , ~ )  are  not small and can not be neglected. 

For the medium made of laminates consist of two materials, both 

have low thermal conductivity, the values of the total 

temperature 9.({,r)are higher compared with the total 

temperature of the medium if one material is exchanged by a 

material of high thermal conductivity. 
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I 
Fig. .a The variation ofJ 'wilh the time I 
at the first threc interfaces. 

T 
Fig. .b The variation of 19' with the time I 
at thc first three interfaces. 

I 
Fig. .a The variation o f 3  with the timer , 

at !he first three inlerfaccs. 

' I  
Fig. .a The variation of 19, with the time r 
at the first three interfaces. 

I 
Fig. .b The variation of19 wilh the time 1 

at the first l h n e  interfaces. 

I 
Fig. .b The variation o f  19, with the t imer 
at the first three interfaces. 
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I 

Fig. .aThe variation of$* with the time I 
at the first thrrr. interlace.c. 

I 
Fig. .a The variation of 19 with the time I 
at the first three interfaces. 

7 

Fig. .a The variation of J, with the lime 
at the first three interlaces. 

I 

Fig. .b The variation of J' with the time I 
at the first three interlaces. 

I 
Fig. .b The variation of J with the time I 
at  the lint lhree interfaces. 

1 

Fig. .b The variation of d ,  with the time 1 
at the first three interlaces. 
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