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OIL FHiL.M THICKNESS FOR THE GEARS OF CIRCULAR-ARC TOOTH-PROFILE
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ABSTRACT

A lformula for the ail flilm thickness in elasto-hydrodynamic lubrication for the gears
of ¢ircular-arc tooth-profile is derived in terms of all parameters. This required the sunuita-
neous solutions of the Reynolds equation with the elasticity equation by using the [inite
difference method. This formula represents a simple 100! for the designers, where the ol
film thickness can be caicutated, and the corresponding load capacity of the gears ol circular-
arc tooth-profile are determined, for any given speed, helix angie, radii of curvature, lubricant
properties and material of the gears. The caiculated oil film thickness obrained from the
presented formula is compared with the existing theories of elastohydrodynamic {ubrication
equations deveioped by Hamrotk and Dowson, Cheng and Archard and Cowking and <hows
that the calculated values of the oil fitm thickness obrained from the presented formula
are greater

INTRODUCTION

Helical gears of circular-arc woth-profiles are conformal gears with point contact betwe en
teeth changing 1o an elliptical area under load [1-3], Contact between these gears s along
the face and no progressive contact occurs on the profile.

The {irst step towards a theoretical solution of elastohydrodynamic lubrication EHL of
point contact conditions was presented by Archard and Cowking {4} They adopted an approach
similar to that used by Grubin for line contact conditions. The Hertzian contact zone s
assumed to form a parafle! film region and the generation of high pressure in the approaches
to the Hertzian zone is considered. Cameron and Gohar [5] derived an approximate equation
for the EHL of point contact , using a number of assumptions similar 1o those used successiolly
with the linre contact . They also used an optical interlerometry technique in getling the
shape of the oil film ., Cheng [ 6 ] presented a numerical solution of the elastohydrodynamic
film thickness in an eliiptical contact , also used an approach similar to that used by Grubin
in determining a minimum {ilm thickness for point contact . Hamrock and Dowson [7 , 8 , 9
and 10} presented the theoretical solution of the isothermal EHL of point contact . [ 7 ]
presented the elasticity model in which the conjunction is divided into equal rectanguiar
areas with a uniform pressure applied over each area . [ 8 ] presented a compiete approach
{or solving the EHL problem for point contact. [ 9 } presented the influence of the ellipticity
parameter upon solutions to the point contact problem, the eflipticity parameter was varied trom
one {a ball on a plate) to eight {a conliguration approaching tine contact) . [10] presented
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the influence of the ellipricity parameter, the dimensionless speed, load, and material para-
meters on the minimum oil film thickness.

This paper presenls a numerical solution for the EHL of the gears of circular-arc
toath-profiles to obtain the oil {ilm thickness and load capacity for a given oil viscosity,
surface velocities, pressure viscosity exponent, maximum Hectzian pressure, size ol
the Hertzian ellipse, helix angle of the gear and the radii of curvature along the helix angle
and radii ol curvaiure in the neormal plane to the tooth. This is achieved by solving
the Reynolds equation numerically with the elasticity equation using the finite dilference
method. The calculated oil film thickness obtained from ihe presented lormula is compared
with the existing theories of EHL equartions.

NOMENCLATURE

a = semijaxis of the eilipse in plane normal to the tooth, mm “in x-direcuion”
A =parameter, A’ (31/3p), { (Of/3p) N

Ag=dimensionless parameter = 3W / 8bhE

AAG, AA2, ... = cONstants in @ computer programme and equations.

b = semiaxis of the eilipsealong the helix angle, mm "in y-direction"

B = parameten?H® - (31/0G)31/0F)

Bi, B2,..... = conslanis in a computer programmmne and equations

C =dimensioniess parameter 12 ThaVi{hg PHz)

CAP and CBp = the pressure density coelficients

D = dimensionless parameter, U/V

E, E2 = modulus of elasticily of the pinion and wheel respectively, Kp/mm?

E = [(1- UYEL + 0= yYE, T

F = dimensionless parameter, ¥/V
f = viscosity exponent function
h =
h

ai} tilm thickness, mm

0 = minimum oil film thickness, mm
H = dimensionless oil film thickness = h/ho

HI = dimensioniess oil film thickness ho/R , H=H’

Ly, Lz, ... = constanls in equations and computer programme

m =constant in equations

n = constant in equations

p = pressure in the oil tilm, kp/mm?,

Pyz = Hertzian pressure, kp/fmm?

Po = cent ral pressure = 1.5 W/Mab kp/mm?’

= dimensionfess pressure = P/Pz
reduced pressure
qfC
radius of polar coordinate
xy Rly = radil of tooth curvature of the pinion in the plane normal to the tooth and
aleng the helix angle, mm

R2x, R2y = radil of tooth curvature of the whee!l in the plane normal 1o the tooth and along
. the helix angle, mm
R, = elfective radius of curvature in the plane normal to the teeth = [ IfR}, - 1/R2¢ I} mm

n

3
q
r
R

—_—

R‘y and R = effective radius of curvature along the helix angle = [1/Rjy + l!RzyTl mm

U), Uz and U = sucface velocities in the plane normal to the teeth m/sec

Y1, ¥2 and ¥ = surface velocities along the helix angle m/sec

W), W2 = surface velocities in z-direction "plane normal 1o the oi! [iIim'" mfsec

W[, W7 = elastic deformations of the tooth [ar the pinion and wheei in z direction mm,
W = too1h load

%, X = coordinate and dimensioniess coordinate xfin the plane normal to the toath

¥,¥ = coordinate and dimensionless coordinate y/b along the helix angle

z = coordinate across the oil {ilm.
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o¢ = pressure viscosity component, mm?{kp.

= «PHz

ellipticity parameter = b/a

loca! viscosity of the lubricant, kp. secfmm?

inler viscosity of the lubricant, kp. sec/mm?

- dimensionless viscosity of the oil fitm = T

= ratio of the absolute temperature af the oil film to the ambient temperature
, = Passian’s ratio of the pinion and wheel

= translormed variable for r

= density of the lubricant, kp/mm’

= ambient density, kp/fmm’

= dimensionless density =Pf#,

= angle of polar cgordinate

= helix angle.

oMo h

£-gopo~SepSldng

THEORETICAL ANALYSIS

A- Reynolds' Equation @
The equation which governs the genetation of pressure in lubricating films is known
as lhe Reynolds’ equation. This equation is decrived by applying the basic equations of melion
and the continuity of the lubricant. This equation is written as follows, (111 see Fig. (N

d(Pr apy o [PH aPY. @ A
(o 85 ) o (B 37 = Srleumlgrleve)

—Puz%]%— _.PVQ%_[;_,,P(w?_wJ ()

The refation between the viscosity, pressure and temperature are in the from, [6]

f1P = FHP - -t P
7 . 77°et o1, 77:e[P,e} T :eHP,Bl (2)

The reduced pressure can be written as [ollow;

q=[ !ﬁ L["é”ﬁm]

The density of the lubricant, according to [12], is

P 1. 1 ()

[3)

To convert Reynolds equation to dimensionless form see Fig. {2}, put X =

X
-1

,V:_.Y__; p-:_e_, :__I.-]_.__.;F—j-:i_;_-;??; a =--b—'
5 P 7 Wy 03 "

3 [PH OB, 1 O [PHOP o 5
B8R 1 (B 8E)- T[4 GylPu) g & lPw
Y2 poH (5)
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Fig(1)
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Dilferentiating equation {3) with respect to X

g R )

From equation {2)

0 | (_1= }

R T (OHAFL| \T) ( ) 7 38

0P tOHdF} Q1/08)

5% - GreE 7 5% B—F?ﬁf (6)

Also, diflerentiating with respect to ¥

.OPF (SHOP)L, »0a (of/d8) de
T " TSR 1B T (G P oV (7)

Substituting equations (6} and (7) into equation (5), then

d [P H[(0t10P), = 0g  (O108) 38 d [PHliondr), =dq
SIS T8 - G 1]+ e W'[??ﬂ[[am? 3

%%%e_%e_ﬂ Jmﬂ_{%a%tﬁm., A
FEE R pakR- bl lat

d

This is a general form of lhe dimensionjess Reynolds' equation

i

For the simplilication of the equation (8), the oil is considered incompressible and
isothermal, i.e. @ and & are constants,

_ - oL P -
f=CLP = =78 of 77=€ (9)
The reduced pressure can be written as
_O_LIB - "5 -
gzt -6 ) and 93 _g™XFPOP (9-a)
o8 OX O X
Substituting equation {9-a) inte the equation (8), the dimensionless Reynolds' equation

can be written as follow ;

d_ wQd,, t 3 ;o4 ;-c[b_é.t‘.+_'_©t‘- F dt‘]
Bi"a‘fg?ov oY 3X QoY [ oY

put F:|=-‘(1:— and I-|:H3

O_ 0%,, 1 O (md3,.pQH, ! OH F OH
T ex tm ev M ov TP ax t pov g oy
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To convert equation {10) from cartezian to polar coordinates, Fig. (3) one uses
Z o 22 o2
X=rcosd , Yzrsing, )MY:r2 and  ¢= tan l J

Kuaer _
Or_, _,_Z_X__-ccuscb , 2y "Si"¢’

Eg" X OY Nz
0P _ (/% e d X
et sing an %Q TR

—.L_
©

o9X
bul %.:-‘8__ %.- %dd)hul __-cosd) O --'_ sing -_g$
40 .9 Or o , Thle—_SInq_f)d +Lcus¢) _8_45

o ov” $ov

Substituting these values into equation (10), then

O 10,1, L O (RO8,) _LafO (L 94,59 (103, 10H
LgrHg 2 gr o(p(HO(pl—Le,[Ha——-rl rod o ToT o
04, 1 QH 0T 7, ,0H 04 OH O3 _; OH 1 ... 4 OH
E)E;*To_cﬁcjr]’l"b_r_Or 2"ro¢“—¢5' [rosdg P sind G )

+_'.[sin¢> coscj) ] B[s cj)g—rﬂdr—costpg—(ﬂp— (1)

Where : L'=C°5?¢+E5i"¢ ’ LZ_S[n¢+BQ COSlcp and L|3:Sin¢J coS (I) [’_Zl?_"'-]

This equation is solved numerically by using the finile difference method. The variation
of § is expected to be more drastic near r = | and very gradual as r = final’ it is benelicial

to transform the variable r inte a new vanablegby the lollowing refation :

r=8 _1

This transiormation enables one to use even grids in the radial direction

6r=e§b§

substituting these values into equation {11) gives

(_H_94, l-?.t:'a'é d {;,_i}_’a[ |
dé & O g€ f 0P 03 o6& eé: —‘_5

' dﬁhr OH A3 c}Héq] Li_OR od ,
6356.15 O of" EOf of

{e§| i od O§ e§
3 OHY. F rins OH. e
e& cos Og)]- 5 {stnqjogi-f—g—l—cos(p%] {12)
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B~ Application of the Finite Difference Method on Reynolds Equation :
Refering to Fig (4} the difference form of equation {12)

(ﬂf)[ ' |n|nq1"'dl( i -4( Fé)ti.jl)q“-i?(j:gi_) ;I?IIHJ (

e
-(H

o 2 |
e

«H J9+H G L[”__q-q-ﬁ q
l: et v Lija) 1 |||j‘)- I|,||||,|-1l] 13 A&"& [e ] ( fislott  field li»'th U»H)
2 1|(,1)

| R P N N R e
+{{“§_ - £ }(qri,f.n—qu,ir‘)+a§a¢(?_]';j'(%.u-u_qii‘l,il_qri,i-uqn,n

E‘ I)ﬁ.”] (e- ]Ii,j} €21

g -H 4 - § q J» ___’ (
6§ﬂ¢>(e ')Ie,n f‘*'ll Moy Lt Gl l) Iw.u i fisj) a§a¢ (e )M]

II

A & -A 4 -R4 &Hﬁ]].

q 4 [I:i d -H 9 - 4
ol Tialyjd - i jatd T 1) el 1 1ijj)

e EY [e i obid fiohgy (it 1] fisjd Gl
i e [ﬁq Q—HQ+Q]=
H .”u,n] (643]2(( § ] ) (s} tigje II el i () Giegald Hq‘p,j) i,
_ 3
L - - i € \x H - ] —-L-[l i
DL‘hg CDSqD(Hﬂfhil H:i,i))£ adp smcjo(eé | hi,jy( tijjol) Hr'ui}) +B ‘ﬁ_f_smcb‘
Mo n,n) cpcoscb[ e, )n.n( fjoi H{-,n}]- B[_ESI el foit "'”) “—$ms¢
3
[ E2 ] «[H -

For simplicity of manipulations, equation (13} is written in the lorm {13, 14 and 15]

(111 [ 8 363 u«)jTB.3':'{;,;?”839':'“,,',.)]"@A3Hr.*..n+

AALHli,j_]-AAsHIi.jﬂ]) -\BE;B [m;} Hti,j]_-LaH“,ju]] q{'m,j]

Il

- 873':'[ i,j]] q{i—l,i]— (- L3}':-- i By Hti,n*B:goHn,;m) q[i-j*ll

- BlgHﬁ,jl) qu,j_u_( Bigo F.i,jl] q{m j+|}] Hel
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Fig(3)Geometry of contact aler transformation
inlo the polar coordinate
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C - Boundary Candition : o The -

i i i i try across AlA%. e pressure inst

e ta Figs(3 and 4) there is an axis of symme v
the -?o%ctoa:;dt' ag,-ea rf.;gl is constant and maximum. This preisure I“Egn (?:luzijﬁir?oa:hL ;Y(I:]tllm,c?;t

i isk it must be practically at r = 2 as that o 3 an . Y| .
2}’ ?::I:Err;:t ?Jl::al quadrant pAl Az Al A4 Al in the analysis. The boundary conditions are:
a- Along Al A2 the pressure is maximurmn
e

b- Alang Al Al, ¢ ='ﬂ'ra% =0
¢- Along A A4 the pressure equal zero

% e =
q @n7d7] % gec! ¢ Where: = Gat Al
d- Alang A2 A3,¢=m2q=§%’%q- ,q>(’7}=1, et , 7=Sec

D- ©Qil Film Thickness Equation :

The oil [ilm thickness berween the two mating gear teeth is given by as follow, see
Fig. (5)

Ryy 2x 2 "Ry, o Hyy

The elastic deformation of the two maling teeth in the 2-direction (W, and wy) is written

in general form as [16] :
,;,_I-Lﬂ//q.dA (16}
T ITE r

qdA, is the pressure acting on an infinitely small element of the surface of contact, and
r is the distance of this element [rom the point under consideration.

2 -
1 1 ¥ 1 1 v\ (3 .3
h o= b+ —’E‘T—( )+ ( + Y= (q +¥5) {15)

This form is written in carrezian coordinates as [ollows, similar 10 [17).

b oa
= P{x,y) dx.dy
WXy} ®
) ﬂ'E [ / - F{x:xr_]?:(y 37

The efastic deformation az the centre X =y = 0

b
-~ WI0,0) = \// Pix.y] dx dy (n
TrEba\’ X7+ y?

According to Hertz the intensity of pressure p over the surface ol contact is represented

by the ordinates of a semi-ellipsoid constructed on the surface of contact, thus according
to [[8),

3 L
Pley)e Rfi-K-1) ;

Substituting the values of Po + ply) in equation (I7) gives :
b a

2
- 1 3w [I"_gg_l?]*dxd
W= g 77Tk ————‘—h—a{xh v Y
-ba

Substituting this equation into the oil film thickness equation {15}

2 hatl x? Y’}';'
SYNPAS.  2 H T VA Loy J0 S  O:  O f8 r-vo
h=he E(R., Ry (RIY ‘R‘j 2ﬁ‘ab/ el

-b-a (X2 * )ﬂ)?
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afler _deformation

gear

belore deformaition

after deformation fé /%\/

0,
y2 2
TRy R2TIRy

a. represeniation of the qil film belween convex_convex radi of curvatufe in
y- direction, 12

gear

brepresentatian of the oil film between convex_concave radii of curvalure
in  x_ direction.
hj=hydrodynamic oit film thickness .
hep=elastohydrodynamic oil film thickness

Fgis)

T
AKX ! |N-

™~

: |

t
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a -
h ., xl(] ¥y 11 W /("_?1;'%7)?
or -|+_.. } (__. __).-_- -—/ *dxdy (18)
¥

he 20, 'Rix R

At no load the contact between the two mating gears teeth is a point. In a normal plane to
the tooth the contact is considered as that of sphere and spherical socket “convex-concave”,

the semi-ellipsoid a-is written as follows [18)]

1 13.3 W
(Re ”a) 'R-R—)’T v
X m

In the plane along helix angle the contact between the two mating %ears teeth is similar to

two spheres "convex-convex', the semi-ellipscid b is written as follows [18]
N '
W—+
b- 3 " E R L BN )
L {J_,*l_ Ry R;/ & b'E
RI)’ R?,
Substituting the equauons {a) and (b} into the dimensionless oil {ilin thickness equation (18)
and putting X = xfa, ¥ = y/b and B = bfa, we have
1 :
=12 o -y
Do X3w, Y3 w31 w K-V
ho  2ahy,t E° 2bhot E' 270E bhy ((5(/ e *??)
AL

:hag;ve[_ +Y-_/ ((;g] \:J’*’ dY]

HeleA [{3)4 . v--j: [[IX;B; 12}75( dY] (19)

This equation is writen in polar coardinates as fallows

1,21

1
2,7
H:1+An[2 indy _ b (1 -1} dobdr ]
MPcostd +Sin'b) T | | TeogT + ST (20)

o 0
oo H=1 + A, [rz(ﬁ cos’d + Sinz(p) - -T-?:] Ww]
1,210
(1 —r)7 dodr

(cof'typ? + Sikp) T

Where: WwWw =

The dimensionlessoil Lilm thickness equation is written ala point {i,j) as follow ; see Fig. (4)
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)}I

where §,§0,[;_zm§ and b= q% +{j-12d

The integration WW is soived numerically as follow and according to [13) see Fig (6) ;

z-ln-hz/f'( X.Y)dxdy =?;wi ((X;, %) ; Where

(%) ¥) W,
{0,0)

1; hcosz‘rﬁ( 5 - hsm—-—ﬁ) 'S'H’—
T30

{s+r"hm [& +r“'h9mm< k-5
10 4]

This form is writien in polar coordinate as follow

=1+A [[e _1f[ﬁcns¢+s:n¢J - -?"r-,—ww] (2

1Rl

! N
(=T gbdr 35" wir. &)
(cosy + sifP W2~ 121: '

THEORETICAL RESULTS :

The numericai solutions of the Reynolds' equation (14) with the oil {iim thickness equation
{21} gives the diswribution of the dimensionless reduced pressure § as a function of Ao, B
and Y/ . Fig (7} shows the main flow chart, and the computer %rogramme is made on the
1BM personal computer AT with a core capacity of 640 k. Fig (8) shows the change of the
reduced pressure § with the change of the dimensionless parameter Ao at different values
of the elspticity parameters P and different helix angles. [t indicates that the reduced
pressure § decreases linearly with increasing the parameter Ao for different values of B
and Y- The linear relationship between § and Ao is written in the form;

§ = ma ? (22)
| -ciﬁl
but G- i1~ € and o= OLR,

“127) av/nd Prz _

Z3LP 2

. - h

qu:l - € )0
200 7} ay

The pressure is maximum at v = | and the value of e'OCP can be neglected,
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Fig(s )

. 29
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START
[DIMENSIONS]

[CALL_INTEGRATION WW = SUMI|

(EXAD, FAYQ, DEXA, DFAY, BYTA, Di. F
{LOAD PARAMETER Ao = Ao (K)]

= I,M

{CALL ETCH H(1,2), Hi {1,J)]
I =1,M173=1,M2Q0,3) = 0.0]
BOUNDARY CONDITION

[CALCULATE THE CONSTANTS ON THE EQUATION)

HOL = 1,

QU= 1AAEIAAT-AARYGlis T I)-AAT*QU-1,1-AALTQU,I+ 1 AR OILI-T)-ARTIOU 1,3+ 1) )

[EPS = EFS + 1Q(,7) - ADLD QJ

|Ep:5<jfs S
NEGATIVE

TTER - 1.

END

Fig. (7 ) Main flow chart.
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1
“ EI :—I he
20t M avV
Substituting this value and the value of A in the equation {22) and rewrite this equalion

as tollow :

h?
1 o 1]
1204 ';‘7 a V Bbh

hoz12m(0L7) V) a )( )(h—)

By dividing this equatien on R2 to get a dimensionless form

e vz P B B
h

7n

=n

R":Em "zm[an°v)(—J =)
(;°] zmtwﬂ—) (ke

o (12m)- (O*—Wo\’]’ "[i *% (23

] [8bRE

From Fig{8], for using a pair of gears of 22° helix angle m=015855 n=0.7G2603

b 1 CK.'?OVGNI a 077 0542
o _1.642 (_R_].( 4 . (W)

for pair of gears of 34° helix angle m=Q12425 , n=075968

D-&JE -0.612

ho . 1.38 (@ AV 02 1 (W]
R igRE

for pair of gears of 42° helix angle m=0.0861 , n=0.8426
0723

ho_i02g (@ TV a P55 AW
R R R (gRe)

COMPARISON OF THE DERIVED THEORETICAL FORMULA WITH THE EXPERIMENTAL
RESULTS AND THE EXISTING THEORETICAL FORMULAE :

values of the oil {ilm thickness obtained from the derived theoretical lormula are compared
with the experimental values of the oil film thickness [20] and the theoretical values obrained
fram the existing theoretical lermulae carried out by Archard & Cowking, Cheng and Hamrock
& Dowson. These formulae are presenied in appendix (1). Fig {9 } shows the calculated
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— qu
NN
T %"'or 43 il
. : 30 9_@.:,

o
[N
2
S_ -2 ”H by *0\
[~ 9 10 4‘{‘30‘86 =
f NG
O “:Q) f
¢ .3 %

0

G

0 1 10 100 1000

Dimensionless parameter Ao

Fig(8 IChange of reduced pressure  with the change of the dimensionless
parameter Ao at different helix angles of the gears

120,— B
o 1 1T
ot ™

Ekp, .
e o Meny
90 S -7

Qit fitm thickness ,
=~ o
fer ) o

S

Derived equation Chen :
equati
—%ﬂ W equation
——_

|_Hamock and Dowson equation
5 I

r———

0
200 300

L0 S0 6800 N0 00 900 W00 N 2o

Tooth  load, Kp

Figl 3 JChange of the cakuiated values of the oil fitm thickness obtained from the derived equation
with the tooth load as compared with the experimental values and with those oblained from
Archaid & Cewking, Cheng and HammckyDowson equalions at speed 3000cpm using ol of
kinematic viscosity 462¢St a40°C for a pair of gears of 22° helix angle
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values of the change of the oil film thickness obtained {rom the derived formula with the
applied tooth load as compared with the experimental value and wilh those obtained from
Archard & Cowking, Cheng and Hamrock & Dowson at speed 3000 r.p.m, oil of kincimatic
viscosity 462 cSt at 40 *C using pair ol gears of 22 helix angle. From this ligure
it is noticed that ; the experimental value of the oil film thickness is higher than that of
the theoretical one. The existing theoretical formulae are based on a disc machine which
give point or elliptical area of conrtact, the radii of curvatwre are convex for the two planes
which differed than the experimental conditions. For the experimental conditions the concave
convex radii of curvature [or the plane normal to the tooth make a reservoir for the oil
supplied to the track of contact and make a pumping elfect, in addition to this the ellerrt
ol helix angle make the wedge angle effect. These conditions make a better eflect on Lhe
Iormation of the oil [ilm. The rate of decrease of the experimental oil film thickness with
applied tooth load is greater than the theorerical one due to increasing the effect ol dynamic
load, decreasing lhe effect of wedge action and friction effect on the experimental values.
Furthermore, load parameter on the theoretical equations has a slight effect upon the oil
{itm. Qil [1lm thickness obtained Irom the derived Lheoretical formula is greater than any
value oblained [rom the existing theoretical [ormulae and is in more agrrement with the
experimental values. This is due to the lact that all parameters ol the Reynolds' eguation
were taken into consideration ; eifect ol velocities along the helix angie and in normal
plane of the gear tooth, eflect ol motions due to variations of the oil film thickness in
normal plane ol the tooth and along the helix angle, and the effect of motion in the plane
normal to the oil [ilm thickness. Also the effect of convex and concave radii of curvature m
normal plane and the convex convex radii of curvature along the helix angle. The oblained
oil tilm thickness by using Cheng equartion are greater than the other values obtained [rom
the other existing theoretical formulae due to the assumprions mentioned in appendix (I).
While Archared & Cowking equation give oil [ilm slight differed and smaller than the oil
litm by Cheng. Qil fiim thickness obrained by Hamrock & Dowson equation Is minimum.
This is due 1o using the model of elasticity mentioned in appendix {I)

CONCLUSION

A procedure [or the numerical solution of the elastohydrodynamic lubrication lor the
gears of circular-arc tooth-profile is presented. This calls for the simultaneous solution of the
elasticity and Reynolds equationrusing the [inite difference technique. The derived theoretical
formuia represents a simple tool for the designers, where the oil [ilm thickness can be
calculated, and the corresponding load capacity of the gears oi circular-arc tooth-profile
are determined for any given speed, helix angle, radii of curvature, llibricant properties and
kind of material ol the gears. The calcutated oil filin thickness oblained from the prescnied
formula is compared with the existing theories of elastohydrodynamic lubrication equations
developed by Archard & Cowking, Cheng and Hamrock & Dowson and shows that the calculated
values of the oil film thickness obtained from the presented formula are greater. Also the
oil [ilm thickness obtained from the derived theortical formula is compared with the experi-
mental results [20] and shows the oil film thickness obtained [rom the derived [ormula is
smaller.
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APPENDIX (i)
EXISTING THEORETICAL FORMULAE

Archard and Cowking equalion :
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Cheng equation:
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Values of C and n for each 18 are given:
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Harnsock and Dowson equation:
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General Assumptions For )‘\ll Equations :
1- Qil Iilm is incompressible and isothermal.

2- These equations based on a disc machine which give point or elliptical area of contant.
the radii of curvature in the two planes are convex. This is dif{fered than the experimeniai
cendition.

3- Neglecting the efiect of the dynamic load and Iriction.

Cheng solved the elastohydrodynamic problem for elliptical area ol contact. The deforma-
tion contour in the inlet region was calculated according to Hertz thecry for elliptical contacl.
The Hertzian contact zone is assumed to form a paralled [ilm region and the generation
of high pressure in the approaches to trlme Hertzian zone is considered.

Archard & Cowking treated the point contact as an assembly of elemental line contact.
They assumed a Hertzian deformation [or the case of a sphere on a plate. The Hertzian
contact zone Is assumed to form a parallel film region and the generation of high pressure
in the approaches 1c the Hertzian zone is considered.

Hamrock & Dowson solve the elastohydrodynamic problem [or pcinl contact this required
the solution of the elasticity and Reynoids equations.They presented an elasticity model
in which the conjunction was divided into equal rectangular areas with a uniform pressure
applied over each area.



