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THE APPLICATION OF MATHEMATICAL PROGRAMMING
FOR THE DESIGN OF AXTALLY LOADED MEMBERS'(TT)

. BY
.DR, SOAD MOHAMED SERAG

ABSTRACT:

Tna previous papér we outlined the -application ‘of geometric ©-
programming in the des1gn of axially loaded members. In this
paper we dlscuss the solution techmque and 'extend the formulat—
ion to the general desxgn problem based or mamly kind of
material, t¥pe of machxnablllty and (deSLgnPcost), the perform-
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I- INTRODUCTION:

in our previous paper we concluded that the optimal desigqn

problem can be cited as follows.
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II. SOLUTION TECENIQUE:

The followmg sectlon restate the G. P. agam and .our case
is a sigromial optimization problem. Fig. (1), outlme the flow
chart of the soclution technique followed by subf_program of
solution for the linearisd coefficient system. .
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GEOMETRIC PROGRAMMING COMPUTER PROGRAM:

As the number of variables and terms increase either in the
objective equations or constraints, it becomes impractical to
solve by the regqular method. A computer program was developed.
The logic diagram of the computer program is indicated in Figure
1. For the purpose of completion, the mathematical model of :
geometric programming will be written again.

Geometric programming finds the minimun of a multivariable,
nonlinear function of geometric form:

2

T N
otn -
Minimize Y (x)= Z &tcct” (xn)

t=1 n=]

subject to constraints of geometric form

Tm N
a m
Y& cadlfe) = =
t=1 et .

6:* 4nd @G, = + 1 {the sign Of ecch term in the objective function
and uth constraint, respectively)

COtand Cmé’o (the coefficients of each teram in the objective fun-
th

ction and m ' constraint, respectively)
xn> o (the independent variables)
G-+ (the constant bound of the at® constraint
agp, @nd a,, . are the exponents of the n°? independent variable
of-the l:':h term of the objective function and mth
constraint, respectively ~
M is the number of constraints
T, is the number of terms in the objective function ' .
Tl'TZ""‘Tm are the number of terms in each‘gonstxaint. 1 to M,
respectively.
G = +1 assumed sign of the bojective function

AS the equation developed mostly confirm with the geometric prog-
ramming model, the geometric programming technigue will be used for

the optimization design system of axially loaded members the logic
diagram of the carputer program that will be used is indicated in figure 1.
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FIGURE 1. GEOMETRIC PROGRAMMING (GEOMTRY ALGORITHM})
LOGIC DIAGRAM
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SURR{IUT INF  [MPRLIV (Nb, L. UL, B X, DIGITY)

DIMENSION a(30,30), ULE20.30)0, B30, X130, R{3O}, DX{40}
USES ABST). AMAXIC:, BIOLIUL)

DOUBLY PRECESION &ip

N = Nh

EPE = 1,0f-+
TTHax =« |
ey EPS AND 11M4 AR MATHINI DI M NOF K], wes

XNIIRW = (¢
AT I TS B J

ANIRK = AMAXYEXNIIKM,ABSTX(1]))
T UXNUKME 1,2, 4

DIGITS = —pa1nGla(ips)

6o 10 10

w9 ITER
Do s 1 l1.N
SiM 0.0
DO 4 4 = 1 ,N
SUM = SUM s A1L,J1ex1 )
S5UM = H{1] - sSuM
RITY = sipW

JeliHAX

q pon

#o0 IT IS ESSENTIAL THAT AL],J)eX{) YIELD A QUUBLE PRECISION

RESUL YT AND THAY THL ARDVE + AND - BF DNUALE PRECLISINN,
CALL SOQive INSUL K XD
DXNOHE = g.0
DD £ 1 = 1N
TLos X1
X4bY = XUld 4 n¥i§)
DXNOBEE - AMAXY [DXNDRM, ARS KT ) 3-T })
CUNT INGI
IEC1vEr-1) g, 7.0
DIGITY = -Altli~)0thHAxlI[JXN[]RM/KN(MP.(I'SIl
TF ADXRUPM-EPSSXNORM) 10, 10,4
CONT TN
TTERATIUN DID NOY CUNVERGL
Call SInGi3)
RFTURN
END

LR}
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SURRAOUT INE SING (] WHY)
FORMRT (S4HOMAIRT Y WITH IFRG HOW 1N DECOHPOSE.
FORMAT [ 54HOS INGLIL AR MATRIX 1IN DECOHPOSE. ZERO DIVIDE In SOLVE.
FUORMAT | 54 HONN CONVERGERNCE IN IMPRUV.," MATRIX IS NEARLY STNGUL Ak.
NOUY : 3
NOUT = STANDAKD OUTPAT UK
GO Y0 Tha24v310. 1WHY
WRITE INDUY, §1
GO0 0
WRITE (NOUT,12)
GO 3G 10 R
WRIYE ANOUY,13
RE TURN
END

}
)
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SUBRDUT INY lJECUhI‘ (Wl &, 1) .
DIMENSEUN AU30,%8), ULE30,303, SLALESI3UG. 1FS13W
COMMON 102 : <
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‘ . 10XPIy =}
I LUNT INUE
Lt (BIG). 13,1001
32 Caltl SINGLZ
GO Yt 37
13 TP CIDKPIV-K] J4,1%,14 )
14 J = 1TPSIR)
IPSIRD = IPSEILARIv)
IPSLIDXPIVY =
15 KF » 1P5IK)
CUPIVOY = UL IAF,R] .
KP) = kv} . ’
DO 16 ) = wPL N
IP = 1PS{LHI
s EM o= =uLL)P, kP LYY

DO 1e J =

ULITP K} = ~FM

BV LR

ULEIF, 01 2 ULTTP, ) ¢ EMsu InP, 00
i INNER LLOP.  UST HACHINE | ANGUAGE LOUINL 1 LUMPILLK
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: 17 LONYIRUE
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: Ib AL SENIALY)
; 19 RETURK
END
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I FL N )
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THE GENERAL DESIGN PROBLEM

if we consider a mechanism composed of N members (or links,
although each link might be divided into several members), the
design problem is to find the cross-sectional sizes of the members,
characterized by the variables yi for i = 1,2, ....,N such that

the total volume:
N
v = E ALLIL treevasvssanes(l) .
i=1

is minimized , while the stress in the links due to inertia

effects (or external loading) is limited by:
16 <165) i1z a2

and the displacements at the joints (or anywhere along the links)

are limited by:
ud S uj 3= 1,2, 00eiiiiaed PRI &

where Ai and Li are the area and length of the ith member, ‘i
is the maximum stress in the ith member during the mechanism'sentire
motion, i is the allowable stress, ui is the maximum displacement
for some point j on the mechanism during its rotation, and uj is the
allowable displacement at this point. It is assumed that the cross-
sectional size of each member is completely specified by the single
variable yi. This variable could be area Ai , the diameter for
circular members, or a similar guantity. It is further assumed
that once this variable is known, then all other cross-sectional
properties such as area, moment of inertia, etc., can be obtained .
from it As a result, the area Ai in equation (1) can be written as
a function of the variables yi to the bth power:

b

B £

Ai = (Cyi

where € 1s some known constant.
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where C is some known constant.

If the displacements and stresses in the mechanism are periodic
functions of time (in the steady state) then constraints (2) and (3)
might be decretized for K positions of the mechanism are periecdic
function of time (in the steady state) then constraints (2) and (3)
might be decretized for K positions of mechanism:

\Gik\ < 6- i=1,2,..... N

K=1,2, 000004k R 13!
ujk Luj 3=1,2, 00 0n e
k=1,2,0.000 K R ()|

Stress constraints. If only stress constraints exist on the problem
then using the Kuhn-Tucker conditions, the following stresss ratio
formula can be obtained for redesign of the cross-sectional areas:

mixl Erik‘

F v
where ) is the iteration counter’? is a relaxation parameter.
The parameter v controls the stability of the method and speed of

convergence. For all mechanism design problems considered q?= 1
gave the best results. Of this relation as well as its to mechanism

(Al) 9+ 1 = {Al) B |

design.

Displacement constraints. 1f only displacement constraints exist on
the problem, then we can define the functional:

8 =v+‘i.ﬁ Ak (uik - ud)

j=1 k=1

from which the Kuhn-Tucker necessary conditions for an optimal

design are:

>V 3. Xk )
°’. 4 Z:ii K Ase 0 , 0 = 1,2r000esN erineanenea{B)
-3)'1 1 Eﬁ|ayl =

Wik - uj€0, Ajk F 0 3= 1,2,00c00d  ciiiarnne-n
K= 1,2,00000K  cerinnneneaad9)



where ﬂjk are lagranage multipliers.
i1f we assume that the pth displacement constraint at the qth
sicrete position of the mechanism is active, and all other constraints

are not active, then egquations (8) and (9} become:

Jupg
2V +/,l”———u—=o i=1,2,.....8 cerieeneennea e {10)
Dvyi 2vi
upg - Up <o Apg > o e veee- (11

The derivative of the displacement upg with respect to the design
variable yi can obtained from the vibrational eguations describing

the motion. For example, using the equations

—

> -
M{ + KX = F P & )

the derivative with respect to the design variable yi is:

. — —. a“‘
28 F L, X Pk T oKX _9F
ayi ayi 2vi ¥l Yl

Rearranging gives:

B L2 JRE9M ¢ 2K T .43

M ayi 2yl ¥y Pyl ayi

-
which is a differential equation that can be solved for @X/ayi
One of the components of this vector will be the required up?/gyi

nNeeded in equation {9). Experience has shown, however, that the
terms is equation ({13) involving mass are small compared with th_e
remaining terms. Thus equation (13) could be.

written as:

- b 4
-1 -
X . HfeE | 2K rerenenaeea(14)
ovi Ivi ovi
Knowing the value of @upg/&yi, substituting the expression for the
volume into equation (10}, and summing over all the members gives:

»
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be_'_ Ljyi2}
ﬂpc'.-.- 1=1
.}

1=12yl

LI K IR O A B BN B (15)

Substituting this back into equation (10) produces:

Priyi®? dupq
1= | 3= 27 i= 1,2 N (16)
- = gy e ey LEC I
Liyq b1 2lpg
jyi 2yl
1=1

Also, equation {11} can be written as:

1l = B S

e
=]
o

Equations (16) and {17) are expressions which must be satisfied at
the optimal design. If a particular design is not optimal then

the right-hand sides of these equations will not equal one. Thus we
might form a recursion relation based on the right-hand sides of
these equations which will change the design from one iteration to
the next. It is observed that the elements Kij of the stiffness
matrix K in the vibrational equations (12) are approximately linear
functions of the moment of inertia of the cross section for each

member i.e.,
Kij S «Gjirr + #i3212  + .. +®ijNIN

Where #7ij1, ....., ™ijN are constants. Also, the elements Fj of the
forcing function F in eguation (12) are approximately linear functiens
of the cross-sectional areas of the members, i.e.,

Fj3 B3IAL + Bj2A2 + .... + BjNAN

where B3l,....,Bjn are constants. Thus for common crossecticnal
shapes (take a circular shape for example where 1=A2/4} the defiec~
tion upg is inversely related to the areas of the members, since:

Y=kl F
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ingnoring the mass and acceleration terms in equation {12).

More specifically, it is observed that upq is approximately linearly
related to 1/Ai for circular shapes. Thus from equaticen (17), if
uquﬁup is greater than one for a particular design, then the areas
of the members should be increased. AS a result, an iterative equat-

ion migh be formed based on this ratio, i.e.,

(Al) p+l = oo (Ai)p P . 8 -
where we have assumed a linear relationship between upqg/fip and 1/Ai
However this iterative formula does not take into account the other
optimality equations (16), which are also related to the areas.
Since the displacement upg is proportional to 1/A, then the der-
ivative Qupg/ 2yl will be approximately proporticnal to 1/Ai2

thus the second term in equation (16}, l.e.,

will generally be reduced if the area Al is increased. Of course this
is a nonlinear relationship. Similarly the first term in equation {16}

i.e.,

N

I niy; o1
i=1

Liyi®™?
will decrease with increasing Ai, since Al = Cyib. Thus an iterative
equation might be formed from equation (16} similar to that of
equation (18) except it would be nonlinear. However these equation

might be combined to form:
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[ Ljy) 3ugg ] Al
(Ai)u+l = I — 2yl erereeresa(19)
Liy1 uPQ J .
=1 YI

which is the primary recursion relation for redesign of mechanisms
involving only displacement constraints.

The exponentf?,called the relaxation parameter, takes into account the
nonlinear relationship between the area Ai and the right-hand side

of equation (16). Experience has shown that for mechanism design
problems values between 0.001 and 0.2 gave excellent results. For
small values of, the technigue converges very slowly but for larger
values of n stability problems sometimes occur, where the areas
oscillated from one iteration to the next. It is observed that the
iterative equation (19) takes into account both optimality conditions
{16) and {17). 'The design variables (through Ai) will continue to
change as long as either condition is not satisfied.

In the derivation of the interative equation {19}, it was assumed that
anly one displacement constxa;nt was most active (or most vxolated)

At the optimal design, it is possible, even likely, that more than one
constraint will be active, however this point, for real design prob-
lems, is almost never reached by currenly available nonlinear optim-
ization methods. There will be only one most critical or violated
constraint. The iterative formula (19) derived here simply takes
advantage of this characteristic. It is assumed that only one displac-
ement constraint at some input crank angle position is most active,

all other constraints are considered inactive, In the special case
where two or more constraints are exactly egual because or symmetry

or other limitations, these exactly equal displactly equal displacements

are treated as one active constraint.

Based on the iterative equation (19) a design algorithm for displa-
cement constrained mechanism design problems can be stated:

1. Choose a design yi for i = 1,2,....,N (and calculate areas &i}.
Choose a value of the relaxation parameter ‘7 {between 0,05 and 0G.15
is suggested).

2. Evaluate the constrained displacements at K discrete positions

of the mechanism during its motion.



—04-

3. Record the positions of the mechanism where each constrained

displacement reaches its maximunm.

4. Find the most critical displacement upg, i.e., the one for

which upg/up is maximum.
5. Compute the derivatives dupq/dyi.
6. Use equation (19) to resize the elements.

7. If the volumes of two successive iterations are very close
{saybetween 0.001 percent and 0.0l percent difference} and the
displacement constraints are satisfied to within a given tolerance
{say 0.005 percent) then stop; otherwise go to step B.

8. Determine the displacements. for” the new design only at the
recorded positions from step 3 and continue from step 4.

This procedure has been applied to a number of examples and has
been found to be effective on displacement constrained mechanism
design problems. Step 8 in the process was used to save computat-
ional time. It was found that in almost all cases, no matter what the
starting design, the positions of the mechanism at which the maximum
displacements Qccurredldid not change throughout the optimization.
Thus, after the first iteration the displacements need only be calcul-
ated at the recorded maximum positions. A final complete analysis for
the optimal design could be used to verify these maximums.

Stress and Displacement Constraints. More practical problems in
mechanism design occur when both stress and displacement constraints
are included. The stress recursion formula of equation (7} can be com-
bined with the displacement recursion formula of equation (19} to
produce the following design procedure:

1. Choose a design yi for i=1,2,....,H8 {and calculate areas Ai).
Choose a value of the relaxation parameter 7 {between 0.005 and 0.15).

2. Calculate the stesses in the links, and the displacements at
those locations on the links which are constrained, at the K discrete

positions for the mechanism during its motion.

3. Record the positions of the mechanism where each displacement

and stress is maximum,
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4. Find the most critical displacement upq, i.e., the one for
which/Upq/Uq/is maximum. '

5. Compute the constraint derivatives Jupqg/dvi.
6. Group the members as follows:

a. if mgx/ﬁik/] ©ij then member i belongs to group Gl.

b. Otherwise member i belongs to group G2. Hote that either
group could be empty.

7. Use the recursion formula:
max/fﬁik}/
. k .
i) Ny = fl——/) 2r)
61

to resize the members of Gl. Use the formula:

[/

7

{Z Liyj® ! g—ffg;’,
(Ai)P i+l = ) N i
L:.y: -1 T %1
izl )

for those members of G2.

8. If the volumes of two successive jiterations are approximately
the same (say between (0.001 percent and 0.6l percent) and all
constraints (both stress and displacement) are satisfied to within
a prescribed tolerance (between 0,001 percent and 0.005 percent)}
then stop; otherwise go to step 9,

9. If the change in volume in this iteration is of different sign
from that of the previous iteration, i.e.,

{Vi"‘l - Vi) (Vi—Vi—I} ( O ..-....---....(20)
and n has not previously been changed, then reduce n by cne half.

10. Determine the stresses and displacements for the new design
only at the recorded postions from step 3 and continue from step 4.
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As mentioned previcusly the value of n controls the speed of

convergence and stability of the method. Step 9 allows the uses to
start with a larger value of n, 56 that the method will converge
rapidly towards the optimal design, However with a large n the
method may overshoot the optimum resulting in oscillation, which
sometimes can become unstable. As soon as oscillations are first
detected using equation (20}, the valué of n is reduced by cne half
its initial value and the procedure continued. Experience has shown
that this was sufficient to stabilize the procedure (assuming n is
started between 0.05 and 0.15 as suggested) and thus no further
reduction in n was necessary. An alternate approach, if additional
stability problems are encountered, would be to continue to reduce

n

as long as coscillations are occuring.
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