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I n  a p r e v i o u s  papor rie ou t ' l i ' ne8  t h e  . a ' p p l i c a t i o n ' o f  geo 'me t r i c  ', 

programming i n  t h e  d e s i g n  o f  a x i a l l y  l oaded  members. I n  t h i s  

pape r  we d i s b u s i  t h e  s o l u t i o n  t e c h n i q u e  a n d ' g x t e n d  t h e  f o i m h l a t -  

i o n  t o  t h e  g e n e r a l  des ig-n  problem based  a main ly  k ind  'of 

m a t e r i a l ,  t lpe o f  m a c h i n a b i l i t y  . ( d p s i g p > o s t ) ,  t h e  per form-  
; : . . <'. . . 

a n c e  ( d i s p l a c e m e n t )  . .... ., . 
I- INTRODUCTION: . . 

I n  o u r  p r e v i o u s  paper  we conc luded  t h a t  t h e  o p t i m a l  d e s i q n  
,. ., problem c a n  be c i t e d  a s  f o l l q w s .  
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I .  
As the number of variables and terms increase either in the 

objective equations or constraints, it becomes iapractical to 

solve by the regular method. A computer program was developed. 

The logic diagram of the computer program is indicated in Figure 

1. For the purpose of completion, the mathemtical model of 

geometric programing will be written again. 

Geometric programming finds the minimun of a multivariable, 

nonlinear function of geometric form: 

Minimize Yo(x)= 

t-1 n-1 

subject to constraints of geometric form 

cd d n d 6  nt = - t 1 (the sign sf eich tern. in the objective function 
and mth constraint, respectively) 

Cotand cmt)O (the coefficients of each term in the objective fun- 

ction and mth constraint, respectively) 

x,) 0 (the independent variables) 

0,- + 1 (the constant bound of the inth constraint 

aOtn and amtn are the exponents of the nth independent variable 
of 'the tth term of the objective function and m 

th 

constraint, respectively 

M is the number of constraints 

To is the number of terms in tbe objective function 

T1,T2, ..., Tm are the number of terms in each constraint, 1 to & 

respectively. 

Q = + 1  - assumed sign of the bojective function 

As the equation developed mostly confirm with the geoletric prw- 

ramming model, the geometric programming technique will be used for 

the optimization design system of axially loaded members the logic 
diagram of the cmqxter prqraa that will he used is indicated in figure 1. 
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THE GENERAL DESIGN PROBLEM 

If we consider a mechanism composed of N members (or links, 

although each link might be divided into several members), the 

design problem is to find the cross-sectional sizes of the members. 
..... characterized by the variables yi for i = 1.2. N such that 

the total volume: 

is ninimized , while the stress in the links due to inertia 
effects (or external loading) is limited by: 

and the displacements at the joints (or anywhere along the links) 

are limited by: 

............. u, & G i  j = 1,2, ........... J ' -0) 

where Ai and Li are the area and length of the ith member, i 

is the maximum stress in the ith member during the mechanism'sentire 

motion, i is the allowable stress, uj is the maximum displacement 

for some point j on the mechanism during its rotation, and uj is the 

allowable displacement at this point. It is assumed that the cross- 

sectional size of each member is completely specified by the Single 

variable yi. This variable could be area Ai , the diameter for 
circular members, or a similar quantity. It is further assumed 

that once this'variable is known, then all other cross-sectional 

properties such as area, moment of inertia, etc., can be obtained 

from it As a result, the area Ai in equation (1) can be written as 

a function of the variables yi to the bth pover: 

Ai = Cyi b .............. ( 4 )  

where C is some known constant. 



where C is some known constant. 

If the displacements and stresses in the mechanism are periodic 

functions of time (in the steady state) then constraints (2) and ( 3 )  

might be decretized for K positions of the mechanism are periodic 

Function of time (in the steady state) then constraints (2) and ( 3 )  

might be decretized for K positions of mechanism: 

Stress constraints. If only stress constraints exist on the problem 

then using the Kuhn-Tucker conditions, the following StKeSSS ratio 

formula can be obtained for redesign of the cross-sectional areas: 

where 3 is the iteration counter is a relaxation parameter. 7 '  
The parameter 9 controls the stability of the method and speed of 
convergence. For all mechanism design problems considered 7= 1 
gave the best results. Of this relation as well as its to mechanism 

design. 

Displacement constraints. If only displacement constraints exist on 

the problem, then we can define the functional: 

From which the Kuhn-Tucker necessary conditions for an optimal 

design are: 



where 3 jk are lagranage multipliers. 

If we assume that the pth displacement constraint at the qth 
sicrete position of the mechanism is active, and all other constraints 

are not active, then equations ( 8 )  and (9) become: 

The derivative of the displacement upq with respect to the design 

variable yi can obtained from the vibrational equations describing 

the motion. For example, using the equations 

the derivative with respect to cbe design variable yi is: 

Rearranging gives: 

- .. 
%? ax' -aF a M  - a~ M - - - ; + K - - - - . - - - - - - ;  X - - X  .............. (13) aY 1 2 Y l  yl ayl as1 -. 

which is a dif.ferentia1 equation that can be solved for 2 ~ / 3 y i  

One of the components of this vector will be the required upp/'&i 

Needed, in equation ( 9 ) .  Experience has shown, however, that the 

terms is equation ( 1 3 )  involving mass are small compared with the 

remaining terms. Thus equation (13) could be. 

written as: 

Knowing the value of lupq/dyi, substituting the expression for the 

volume into equation (lo), and summing over all the members gives: 



~ b k  ~jyj~-' 
2 =l 

tf 1=1 2% 
Substituting this back into equation (10) produces: 

Also, equation (11) can be written as: 

Equations (16) and (17) are expressions which must be satisfied at 

the optimal design. If a particular design is not optimal then 

the right-hand sides of these equations will not equal one. Thus we 

might form a recursion relation based on the right-hand sides of 

these equations which will change the design from one iteration to 

the next. It is observed that the elements Kij of the stiffness 

matrix K in the vibrational equations (12) are approximately linear 

functions of the moment of inertia of the cross section for each 

member i .e., 

Where "ijl, ...... d i j ~  are constants. Also, the elements Fj of the 

forcing Eunction F in equation (12) are approximately linear Eunctions 

of the cross-sectional areas of the members, i.e., 

where Bjl, ..... Bjn are constants. Thus for common crossccrional 

shapes (take a circular shape for example where 1=A2/4) the defiec- 

tion urn is inversely related to the areas of the members, since: -. 
X ~ L K - '  F 





(Ai)u+l = 

which is the primary recursion relation for redesign of mechanisms 

involving only displacement constraints. 

The exponentrjl,called the relaxation parameter, takes into account the 

nonlinear relationship between the area Ai and the right-hand side 

of equation (16). Experience has shown that for mechanism design 
problems values between 0.001 and 0.2 gave excellent results. For 

small values of, the technique converges very slowly but for larger 

values of n stability problems sometimes occur, where the areas 

oscillated from one iteration to the next. It is observed that the 

itecative equation (19) takes into account both optimality conditions 

(16) and (17). The design variables (through hi) will continue to 

change as long as either condition is not satisfied. 

In the derivation of the interative equation (19), it was assumed that 
only one displacement constraint was most active (or most violated). 

nt the optimal design, it is possible, even likely, that more than one 
constraint will be active, however this point, for real design prob- 
lems, is almost never reached by currenly available nonlinear optim- 

ization methods. There vill be only one most critical or violated 
constraint. The iterative formula (19) derived here simply takes 

advantage of this characteristic. It is assumed that only one displac- 

ement constraint at some input crank angle position is most active, 

all other constraints are considered inactive. In the special case 

where two or more constraints are exactly equal because or 6pJnetrY 
or other limitations', these exactly equal displactly equal displacements 
are treated as one active constraint. 

Based on the iterative equation (19) a design algorithra for displa- 

cement constrained mechanism design problems can be stated: 

1. Choose a design yi for i I 1 , 2 ,  ...., N (and calculate areas Ai). 

Choose a value of the relaxation parameter (between 0.05 and 0.15 

is suggested). 7 
2. Evaluate the constrained displaceacnts at K discrete p0sitionS 

of the mechanism during its motion. 





4. Find the most critical displacement upq, i.e., the one for 

which/Upq/uq/is maximum. 

5. Compute the constraint derivatives aupq/ayi. 

6. Group the members as follows: - 
a. if max/6ik/7 6i j then member i belongs to group G1. 

C 

b. Otherwise member i belongs to group G2.  Note that either 

group could be empty. 

7. Use the recursion formula: 

to resize the members of G1. Use the formula: 

for those members of G2. 

8. If the volumes of two successive iterations are approximately 

the same (say between 0.001 percent and 0.01 percent) and all 

constraints (both stress and displacement) are satisfied to within 

a prescribed tolerance (between 0.001 percent and 0.005 percent) 

then stop; otherwise go to step 9. 

9. If the change in volume in this iteration is of different Sign 
from that of the previous iteration, i.e., 

and n has not previously been changed, then reduce n by one half. 

10. Determine the stresses and displacements for the new design 

only at the recorded postions fros step 3 and continue from step 4. 



As mentioned p r e v i o u s l y  t h e  v a l u e  of  n c o n t r o l s  t h e  speed  o f  

convergence  and s t a b i l i t y  o f  t h e  method. S t e p  9 a l l o w s  t h e  u s e s  to 

s t a r t  w i t h  a l a r g e r  v a l u e  of  , n ,  so r i i s t  t h e  ne thod w i l l  c o n v e r g e  

r a p i d l y  towards  t h e  o p t i m a l  d e s i g n .  However w i t h  a l a r g e  n t h e  

method may o v e r s h o o t  t h e  optimum r e s u l t i n g  i n  o s c i l l a t i o n ,  which 

sometimes c a n  become u n s t a b l e .  As soon a s  o s c i l l a t i o n s  a r e  f i r s t  

d e t e c t e d  u s i n g  e q u a t i o n  ( 2 0 ) ,  t h e  v a l u e  of  n i s  reduced by one  h a l f  

i ts i n i t i a l  v a l u e  and t h e  p r o c e d u r e  c o n t i n u e d .  E x p e r i e n c e  h a s  shown 

t h a t  t h i s  was s u f f i c i e n t  t o s t a b i l i z e  t h e  p r o c e d u r e  (assuming n is.  

s t a r t e d  between 0.05 and 0.15 a s  s u g g e s t e d )  and t h u s  no  f u r t h e r  

r e d u c t i o n  i n  n was n e c e s s a r y .  An a l t e r n a t e  approach ,  i f  addi t :onal  

s t a b i l i t y  p rob lems  a r e  e n c o u n t e r e d ,  would be to c o n t i n u e  to r e d u c e  

n a s  l ong  a s  o s c i 1 . l a t i o n s  a r e  o c c u r i n g .  
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