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ABSTRACT 

The current paper presents comparisons between four different discretization schemes for non-orthogonal grids 

in the skewed cavity and highly skewed flow in the curved cavity. These schemes are upwind differencing 

scheme (UDS), upwind differencing scheme with numerical diffusion (UDS-ND), central differencing scheme 

(CDS), and Quadratic upwind interpolation for convective kinematics (QUICK). The comparison between the 

selected schemes for highly skewed flow in curved cavity indicated that the upwind differencing scheme with 

numerical diffusion is the best choice in terms of accuracy and computational cost. In addition, the comparisons 

between the present results and previous results from the literature indicate that the current procedure which is 

more suitable for general purpose codes can produce computational results which are in close agreement with 

those obtained from body fitted and polar coordinates systems. For the non-orthogonal grids in the skewed 

cavity, all the tested schemes produce close results when they are compared with the benchmark solution. 

However, the UDS-ND requires fewer number of iteration and shorter computational time. Despite the upwind 

differencing scheme with numerical diffusion being the first-order scheme, its accuracy is very close to the 

second and third-order schemes. Therefore, the UDS-ND is recommended for general-purpose code because 

its stability is higher than the higher-order scheme and the computational time is lower.  

Keywords: Skewed Flow, Numerical Diffusion, Non-orthogonal, Curved Cavity, Discretization. 

 

1. Introduction 

One of the greatest problems in numerical solution is 

the truncation error. This error appears clearly when 

transforming the non-linear equations system to an 

algebraic system of equations on the grids as 

mentioned by Lilek and Perić [1]. The most cell center 

properties (velocity, pressure, density……etc.) of the 

control volume are the unknowns in the algebraic 

equation system. The cell face properties should be 

computed based on interpolation or extrapolation of 

the neighbor cell center properties. Due to the 

application of series transformation to calculate the 

cell face properties, some terms in this series should 

be neglected. 

The discretization schemes for a convective term in 

Navier-Stokes equations aim to reduce the truncation 

errors in order to enhance the performance of the 

numerical scheme. Finding the most accurate scheme 

is one of the challenges in this field. Many researches 

introduce discretization schemes such as, upwind 

differencing schemes, which are widely used although 

it has a first-order truncation error. 

Many updates for the upwind difference schemes had 

been made such as, second-order upwind (SOU) 

which extrapolates the cell face property with two 

upstream cell center properties, see for example, Shyy, 

et al. [2] and Zurigat and Ghajar [3]. Also, there is 

another technique to have the higher-order truncation 

error by including the second term in the Taylor series 

expansion and treating it as a diffusion part as 

presented in Ferziger and Perić [4]. 

When the velocity direction and the grid orientation 

have a large angle between them (they aren’t aligned), 

the accuracy of the upwind differencing scheme is 

reduced due to the skewness of the flow. Raithby [5] 

introduced a modification on the upwind differencing 
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scheme known as the skew-upwind difference scheme 

(SUDS) to reduce this error. SUDS evaluate the cell 

face center property based on two upstream neighbors' 

cell center properties, as shown in Fig. 1. This scheme 

needs more than five nodes in the numerical study, it 

extends to have other four nodes as, SW, NW, NE, and 

SE. One of its drawbacks is the higher computation 

process needed for each cell face center. There are six 

different possibilities for interpolation for each cell 

face property as referred by Huang, et al. [6]. 

Busnaina, et al. [7] modified the (SUDS) to the skew 

upwind weighted differencing scheme (SUWDS) to 

reduce the oscillation and the numerical diffusion. 

One of the third-order truncation error schemes used 

is the quadratic upwind differencing scheme, which 

gives an interpolation by three neighbors' cell center 

nodes. According to the flow direction, one 

downstream and two upstream nodes should be used 

to approximate the function of the property as a 

second-order curve with the distance. Many 

researchers studied the performance and stability of 

these discretization schemes as Leonard [8] and 

Johnson and Mackinnon [8]. Until now there are many 

other discretization schemes discussed by many 

authors, one of the oldest schemes is the central 

difference scheme (CDS) which gives a linear 

interpolation between the two neighbor cells as 

introduced by Patankar [9]. 

 
Fig. 1. Skew upwind differencing scheme. 

All these schemes among other schemes had been used 

broadly and many investigators compared them in 

different geometrical test cases. Because of the great 

variety in these schemes, finding the better 

discretization scheme (accuracy, computational time, 

and stability) is one of the most challenging in this 

research area. 

The lid-driven cavity was used by many authors (such 

as Schreiber and Keller [10], Huang, et al. [6], Runchal 

[11], Shyy, et al. [2], Biagioli [12], Yu, et al. [13], Jin 

and Tao [14], [15]) to validate the discretization 

schemes. The most geometrical shapes used are square 

cavity with a benchmark solution introduced by Ghia, 

et al. [16] and Botellaab and Peyretab [17]. 

Biagioli [12] compared central upwind (CU), second-

order upwind (SOU) and total variation diminishing 

schemes (TVD). He concluded that (TVD) reach a 

grid-independent solution ten times faster than (CU) 

while (SOU) was seven times faster than (CU). Huang, 

et al. [6] discussed four different discretization 

schemes (SUDS, QUICK, PLDS, and LOADS) for 

three different test cases. They found that the QUICK 

scheme with coarse-grids (22×22) performs better 

than other schemes with finer grids (42×42). 

Shyy et al. [2] introduced a comparison between 

(CDS) and three different schemes based on the 

(SOU). A, B, and C are the names of these three 

schemes, scheme A was based on an approximation of 

two upstream neighbors’ nodes by finite difference 

technique. While scheme B used a finite volume 

approximation. The last one, scheme C, was derived 

by integrating the fluxes over the control volumes. 

They found that scheme C was better than the other 

two schemes. 

The Study of the instability and boundedness of the 

numerical scheme based on the normalized properties 

for different discretization schemes was introduced by 

Yu et al. [13]. They introduced three new schemes 

based on stability analysis. After comparing all 

discretization schemes in simple test cases, they 

concluded that the new three schemes give better 

results than the other schemes. Also, Jin and Tao [14] 

introduced an instability study for 14 hybrid schemes 

based on the second-order schemes. The difference 

between these schemes is the coefficient of the pole 

node which varied from -2 to 10. They concluded that 

with increasing this coefficient the solution has better 

stability, but the false diffusion increases for higher Re 

Number. They found that the more the scheme is 

accurate the more the scheme stability is reduced. For 

the test case studied they recommend the coefficient 

should be in the range from 0.5 to 2. Jin and Tao [15] 

extended their study for 17 hybrid schemes based on 

the third-order differencing schemes which give better 

stability and good balance between accuracy and false 

diffusion as compared with their previous study [17]. 

Study of the accuracy and stability of the interpolation 

and extrapolation of the cell face properties introduced 

by all previous studies in an orthogonal grid, for more 

generalization of the convection schemes the non-

orthogonal grids are very challenging and widely used 

for different engineering geometries. Demirdžić, et al. 

[18] introduced a bench-mark solution for a skewed 

cavity with two different angles. Oosterlee, et al. [19] 

also gave a bench-mark solution for two non-

orthogonal grids as a skewed cavity and L-shaped 

cavity. Based on the work of Demirdžić, et al. [18], 

Erturk and Dursun [20] presented more data as a 

benchmark solution for more skewed angles. 
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Many authors compared the benchmark test case of the 

skewed cavity with different numerical techniques see, 

for example, Roychowdhury, et al. [21], Tucker and 

Pan [22], Li, et al. [23], Choi, et al. [24], Dalal, et al. 

[25], Paramane and Sharma [26], Lehnhäuser and 

Schäfer [27], Murali and Rajagopalan [28], Cheng, et 

al. [29], Kooshkbaghi and Lessani [30] and Kumar, et 

al. [31] and many others. Some of these studies were 

interested in the performance of different schemes. For 

an instant, Roychowdhury, et al. [21] applied for a 

first-order upwind and quadratic upwind for two 

different angles and with grid sizes from 41×41 to 

129×129 and concluded that the QUICK scheme is 

better for higher non-orthogonal grids. Tucker and Pan 

[22] used orthogonal grids and treated the boundary 

walls as a cutting in the cell with special integration 

from the governing equations. Li, et al. [23] used the 

modified TVD scheme for the convictive flux with a 

triangle grid. While Dalal, et al. [25] used unstructured 

grids and used the weighted average of the central 

difference and first-order upwind for the convective 

flux.  

Choi, et al. [24] compared the QUICK and hybrid 

schemes with four different discretization schemes 

and deduced that the QUICK gives better accuracy. 

QUICK, SOU, CDS, and FOU had been compared in 

a square and skewed lid-driven cavity by Paramane 

and Sharma [26]. In these test cases, the first order 

upwind is the worst scheme in the accuracy compared 

with the other three differencing schemes. The study 

used two grid sizes as (20×20) and (80×80. All of the 

comparisons between these schemes (for the best of 

our knowledge) didn’t compare the first-order upwind 

with numerical diffusion. 

One of the challenging problems in numerical solution 

is the skewness of the flow when there is a difference 

between the gridlines and the velocity components. 

This problem appears clearly when introducing a 

generalized numerical code for complex geometries. 

The curved cavity is a very challenging test case used 

to validate the discretization scheme for this purpose. 

Many researchers investigate the curved cavity with a 

different formulation of the Navier-Stokes equation as 

a Cartesian coordinate, polar coordinate, and stream 

function equations. Fuchs and Tillmark [32] 

introduced experimental and numerical study for the 

polar cavity for two Reynolds numbers of 60 and 350. 

A benchmark solution for a polar-driven cavity for a 

wide range of Reynolds number (Re≤17500) was 

introduced by Erturk [33]. Many authors validated 

their numerical code with the experimental data 

presented by Fuchs and Tillmark [32]. See, for 

example, Rosenfeld, et al. [34], Zang and Street [35], 

Chang and Cheng [36], Lei, et al. [37], Qu, et al. [38], 

Darbandi and Vakilipour [39], Kooshkbaghi and 

Lessani [30], Yu and Tian [40], Sen and Kalita [41], 

Kozyrakis, et al. [42] and Erturk and Gokcol [43]. 

Most studies of the polar cavity use the polar 

coordinates and stream function-vorticity equations. 

The others use the Cartesian coordinates with the 

coordinate transformation technique. These 

techniques are not suitable for complex geometries. In 

addition, the evaluation of discretization schemes for 

convective fluxes in polar cavities had not been 

studied for our best knowledge. 

In the current paper, four different discretization 

schemes (UDS, UDS-ND, QUICK, CDS) will be 

evaluated for two test cases. The first test case is the 

highly skewed flow to grids in the curved cavity and 

the second one is non-orthogonal grids in a skewed 

cavity. 

2. Mathematical Modeling 

2.1. Governing Equations 

The two-dimensional Navier-Stokes equations and 

continuity equation in Cartesian coordinates can be 

used to describe the flow in our test cases. Assume the 

flow is laminar, incompressible, and steady. 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0,

 
(1) 

𝜌 [
𝜕(𝑢𝑢)

𝜕𝑥
+
𝜕(𝑢𝑣)

𝜕𝑥
] = −

𝜕𝑝

𝜕𝑥
+ 𝜇 [(

𝜕2𝑢

𝜕𝑥2
) + (

𝜕2𝑢

𝜕𝑦2
)],

 
(2) 

𝜌 [
𝜕(𝑢𝑣)

𝜕𝑥
+
𝜕(𝑣𝑣)

𝜕𝑥
] = −

𝜕𝑝

𝜕𝑦
+ 𝜇 [(

𝜕2𝑣

𝜕𝑥2
) + (

𝜕2𝑣

𝜕𝑦2
)],

 
(3) 

2.2. Discretization schemes 

The general form of conservation equation can be 

written in integral form as given by Ferziger and Peric 

[4] as: 

∬𝜌𝜑𝑉 ⋅ 𝑛𝑑𝑆
𝑆

=∬𝜇𝛻𝜑 ⋅ 𝑛𝑑𝑆
𝑆

+∭ 𝑞𝜑𝑑𝑉𝑜𝑙
𝑉𝑜𝑙.

.
 

(4) 

Where φ is the generalized dependent variable, μ is the 

dynamic viscosity, qφ is the source term, and n is the 

unit normal vector outward from the center of the cell 

face as shown in Fig. 2. 

 

Fig. 2. Two-dimensional control volume 

The conservation equation can be dived into three 

terms as convection, diffusion, and source term. Our 

present study will focus on the convection term which 

can be approximate as: 
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∬𝜌𝜑𝑉 ⋅ 𝑛𝑑𝑆
𝑆

=∑𝜌(𝑉 ⋅ 𝑛𝛥𝑆)𝜑𝑓
𝑓

=∑(�̇�𝑓 ⋅ 𝜑𝑓)

𝑓

.
 

(5) 

Where f = e, w, n, s the cell face center's properties. 

All physical properties are known at the cell centers 

(P, E, W, N, S) while at the cell face center they are 

unknowns. Many discretization schemes can be used 

to calculate the cell face properties, as discussed in the 

previous section. A comparison between four different 

schemes (UDS, UDS-ND, QUICK, and CDS) will be 

introduced. 

 

2.2.1. Upwind Difference Schemes (UDS)  

The cell face is approximated by the first neighbor cell 

center property based on the flow direction which can 

be estimated from the Taylor series expansion as the 

flow direction from p   to E, i.e., (�̇�𝑒 ≻ 0). Thus, the 

expansion of Taylor series about p gives: 

𝜑𝑒 = 𝜑𝑝 + (𝑥𝑒 − 𝑥𝑝)
𝜕𝜑

𝜕𝑥𝑝
+ (𝑦𝑒 − 𝑦𝑝)

𝜕𝜑

𝜕𝑦𝑝
+ 𝐻

 
(6) 

The UDS discretization scheme is a first-order 

truncation error (the first partial derivatives had been 

neglected) thus it gives (φe = φp) as shown in Fig. 3.  

In general, (φf = φU).  

 

Fig. 3. Upwind differencing scheme 

 

2.2.2. Upwind Difference Schemes with numerical 

diffusion (UDS-ND)  

This method is based on (UDS) put with second-order 

truncation error (the second partial derivatives had 

been neglected) so that the cell face property can be 

calculated by: 

𝜑𝑒 = 𝜑𝑝 + (𝑥𝑒 − 𝑥𝑝)
𝜕𝜑

𝜕𝑥𝑝
+ (𝑦𝑒 − 𝑦𝑝)

𝜕𝜑

𝜕𝑦𝑝

 
(7) 

In general  

𝜑𝑓 = 𝜑𝑈 + (𝑟𝑓 − 𝑟𝑈) ⋅ 𝛻𝜑𝑈
 (8) 

So, the first term is treated as a convective term while 

the second one takes the form of the diffusion term.  

 

2.2.3. Linear Interpolation (central difference 

scheme) (CDS) 

The linear interpolation is widely used to evaluate the 

cell face property from the two-neighbor cell center 

property. This method also has a second-order 

truncation error (the second partial derivatives had 

been neglected). The difference between this scheme 

and the previous one is that the first partial derivative 

is vanished in CDS by solving two equations of Taylor 

expansion at upstream and downstream control 

volume center property. 

Usera, et al. [44] introduced a linear interpolation for 

central difference as shown in Fig. 4  

𝜑𝑓 = 𝜑𝐹 ∗ 𝛼𝑃𝐹 + 𝜑𝑃 ∗ (1 − 𝛼𝑃𝐹) + (𝛻𝜑)𝑓 ⋅ 𝑓′𝑓
 (9) 

Where, f = e, w, s, n, and F = E, W, S, N  

𝛼𝑃𝐹 =
|𝑃𝑓|

|𝑃𝑓| + |𝑓𝐹|

 
(10) 

𝑓𝐹 = 𝛼𝑃𝐹 ∗ 𝐹𝑓 + (1 − 𝛼𝑃𝐹) ∗ 𝑃𝑓
 (11) 

 

Fig. 4. Central difference scheme. 

2.2.4.Quadratic upwind interpolation for 

convective kinematics (QUICK):  

The QUICK discretization scheme is a third-order 

truncation error approximation based on the Taylor 

series expansion by neglecting the third partial 

derivatives. Leonard [45] presented a formulation of a 

QUICK differencing scheme for interpolation in the 

rectangular control volume. Three different cell center 

properties are needed as (U, UU, D) upstream, up-

upstream, and downstream as shown in Fig. 5. 

But for the generalized coordinates, the equation of 

interpolation for the cell face properties can be written 

as follows: 

𝜑𝑓 = 𝛼𝑑𝜑𝐷 + 𝛼𝑢𝜑𝑈 + 𝛼𝑢𝑢𝜑𝑈𝑈
 (12) 

Where αd, αu, and αuu are the length factors for 

downstream, upstream, and up-upstream, respectively. 

For example, these factors will be calculated for the 

east face with positive flow direction as shown in Fig. 

5 as:  

𝛼𝑑 = 𝛼𝐸 =
|𝑃𝑒||𝑊𝑒|

(|𝐸𝑒| + |𝑊𝑒|) ∗ (|𝑃𝑒| + |𝐸𝑒|)

 
(13) 

𝛼𝑢 = 𝛼𝑃 =
|𝐸𝑒||𝑊𝑒|

(|𝑃𝑒| − |𝑊𝑒|) ∗ (|𝑃𝑒| + |𝐸𝑒|)

 
(14) 
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𝛼𝑢𝑢 = 𝛼𝑊 =
|𝑃𝑒||𝐸𝑒|

(|𝐸𝑒| + |𝑊𝑒|) ∗ (|𝑊𝑒| − |𝑃𝑒|)

 
(15) 

 

Fig. 5. Quadratic upwind interpolation for convective 

kinematics (QUICK). 

Kholsa and Rubin [46] suggested a solution procedure 

for the higher-order differencing scheme as QUICK 

and CDS. This procedure gives more stability needed 

for the non-orthogonal grides as reported by many 

other authors such as Dalal, et al. [25] and Ferziger and 

Peric [4]. This technique is adopted in the current 

paper as follows: 

𝐹𝑒 = 𝐹𝑒
𝐿 + (𝐹𝑒

𝐻 − 𝐹𝑒
𝐿)𝑜𝑙𝑑  (16) 

Where the superscript L referred to the lower order 

differencing scheme (upwind) and the superscript H 

referred to the higher-order scheme. The second term 

in the equation is calculated from the previous 

iteration and stored as a source term in the numerical 

code. 

2.3. Test cases. 

The previous discretization schemes will be tested for 

two test cases as the application of non-orthogonal 

grids and generalized grids are as follows. 

2.3.1. Test case (1) 

The polar cavity or curved cavity is a very important 

test case to verify the general coordinates. The grids in 

this test case are challenging because of the highly 

skewed flow as shown in Fig. 6. Fuchs and Tillmark 

[32] gave experimental and numerical study for this 

case with two different Reynolds numbers 60, and 

350. The Reynold number was calculated based on the 

tangential velocity for the inner rotating wall and the 

depth length (the difference between the outer and 

inner radii). The annulus sector has an angle, θ=1 

radian, inner radius (r=475 mm), and outer radius 

(R=950 mm). 

All walls are stationary except the inner curved wall is 

rotating with constant clockwise angular velocity.  

 

Fig. 6. Curved cavity geometry. 

2.3.2.Test case (2) 

Lid-driven cavity (skew cavity) flow is a simple case 

for a non-orthogonal domain with inclination angle βO 

on the horizontal. The shape of the skew cavity is 

represented by a parallelogram as shown in Fig. 7; 

thus, all grid lines make an angle of βO. 

A comparison is presented with the benchmark 

solution given by Demirdžić, et al. [18] at 𝑅𝑒 =100, 

β=45O with side length (l=1 m) and upper wall velocity 

(lid driven velocity) Ulid=1. While all other walls are 

stationary. 

 

Fig. 7. Skewed cavity geometry. 

 

3 Result and Discussion 

3.1. Test Case 1 

Examining the generalized code based on Cartesian 

coordinates is applied on the curved cavity with two 

different Reynolds numbers (60 and 350) and compare 

the radial and transverse velocity components with 

experimental data given by Fuchs and Tillmark [32] at 

(θ=-20, -10, 0, +10, +20 °). 

3.1.1. Grid independent study 

Grid-independent study for the two Reynolds number 

is shown in Figs. 8 and 9 , For Re=60, as shown in Fig. 

8, the grid size of (52×52) gives very close results with 

the other two fine grids, while the time needed for this 

grid size is less than the other grids as depicted in 

Table 1 for all the discretization schemes. The running 

time required by the CPU for the upwind differencing 

scheme and the number of iterations is less than the 

other three schemes. Fuchs and Tillmark [32] 

presented a numerical solution based on a finite 

difference scheme and reported that for the small 

Reynolds number (Re=60) the coarse grids and the 
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upwind difference schemes give a good numerical 

result. For Re=350, as shown in Fig. 9, the grid-

independent study for all the discretization schemes 

was introduced for both the radial and transverse 

velocity components. The upwind differencing 

scheme reaches the grid-independent at (102×102), 

while the other discretization schemes (upwind with 

numerical diffusion, QUICK, and CDS) reach the 

grid-independent at the coarse grid (52×52). The time 

needed and the iteration numbers to give an accepted 

solution result for the upwind is greater than the other 

three schemes as shown in Table (2). Many authors 

gave the numerical solution at different grid sizes 

without introducing a grid-independent study as Fuchs 

and Tillmark [32], Zang and Street [35], Lei, et al. [37] 

and, Kooshkbaghi and Lessani [30]. While Shu, et al. 

[47] introduced three grid sizes (49×49, 65×65, and 

81×81) with a notice that as the grid number increases 

the solution gives improved results. 

 

a) Transverse velocity using UDS 

 

b) Radial velocity using UDS 

 

c) Transverse velocity using UDS-ND 

 

d) Radial velocity using UDS-ND 

 

e) Transverse velocity using QUICK 

 

f) Radial velocity using QUICK 

 

g) Transverse velocity using CDS 
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h) Radial velocity using CDS 

Fig. 8. Grid independent study for curved cavity at 

Re=60 and θ=+10o. 

 

 

a) Transverse velocity using UDS 

 

b) Radial velocity using UDS 

 

c) Transverse velocity using UDS-ND 

 

d) Radial velocity using UDS-ND 

 

e) Transverse velocity for QUICK 

 

f) Radial velocity for QUICK 
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g) Transverse velocity using CDS 

 

h) Radial velocity using CDS 

Fig. 9. Grid independent study for curved cavity at 

Re=350 and θ=+10o 

Table 1. Computational time and number of iterations for different discretization schemes at 
different grid sizes for a curved cavity at Re=60. 

Number of 
grids 

UDS ND–UDS QUICK CDS  

TIME 
(sec.) 

No. of 
iterations 

TIME 
(sec.) 

No. of 
iterations 

TIME 
(sec.) 

No. of 
iterations 

TIME 
(sec.) 

No. of 
iterations 

52×52 5.903 713 6.073 753 6.381 753 6.012 752 
102×102 53.202 1735 56.192 1777 59.588 1777 54.906 1776 
134×134 123.576 2305 128.25 2338 131.074 2338 127.77 2338 

 

 

3.1.2. Comparison between different 

discretization schemes 

The difference between the upwind differencing 

scheme UDS, upwind with numerical diffusion UDS-

ND, QUICK, and CDS are illustrated in Figs. (10–13) 

for the two Reynolds numbers.  

For Re=60, all discretization schemes are very close to 

each other and with the experimental data of Fuchs and 

Tillmark [32] for the transverse velocity at all angular 

positions as shown in Fig. 10. While for the radial 

velocity, there is a noticed difference between the 

upwind differencing scheme with the other three 

schemes, as shown in Fig. 11. 

 
a) 𝜃 = −20° 

 
b) 𝜃 = −10° 

 
c) 𝜃 = 0° 
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d) 𝜃 = +10° 

 
e) 𝜃 = +20° 

Fig. 10. Effect of different discretization schemes on 

the transverse velocity component at different 

angular position at Re =60 

 
a) 𝜃 = −20° 

 
b) 𝜃 = −10° 

 
c) 𝜃 = 0° 

 
d) 𝜃 = +10° 

 
e) 𝜃 = +20° 

Fig. 11. Effect of different discretization schemes on 

the radial velocity component at different angular 

position at Re = 60. 

 

All schemes give accepted predictions for this test case 

at a low Reynolds number, while the upwind 

differencing scheme has a lower accuracy at some 

positions. The skewness of the flow in some positions 

as mentioned in Raithby [5] may be the better 

explanation for the bad accuracy of the upwind 

differencing scheme. The computational time in this 

case for all schemes, at the grid-independent, is very 

close, as shown in Tables 1. The better scheme is the 

upwind with numerical diffusion as it gives better 

accuracy than the upwind and gives the same accuracy 
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as the QUICK and CDS while the time is less than 

these two schemes. 

As the Reynolds number increased to 350 the accuracy 

of all schemes is reduced. The present study is for a 

two-dimension problem while the effect of the three-

dimension domain may be of a great impact on the 

difference between the present study and the 

experimental data as stated in many previous studies, 

as Fuchs and Tillmark [32], Zang and Street [35] and 

Shu, et al. [47]. The transverse velocity at all five 

positions shown in Fig. 12, all schemes give the same 

trend as the experimental data. The upwind 

differencing scheme at all positions except at (θ=20) 

has a greater difference than the other schemes, while 

the radial component shown in Fig. 13 the difference 

between the upwind differencing scheme and other 

schemes is high. 

 
a) 𝜃 = −20° 

 
b) 𝜃 = −10° 

 
c) 𝜃 = 0° 

 
d) 𝜃 = +10° 

 
e) 𝜃 = +20° 

Fig. 12. Effect of different discretization schemes on 

the transverse velocity component at different 

angular position at Re =350. 

 

 
a) 𝜃 = −20° 

 
b) 𝜃 = −10° 
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c) 𝜃 = 0° 

 
d) 𝜃 = +10° 

 
e) 𝜃 = +20° 

Fig. 13. Effect of different discretization schemes on 

the radial velocity component at different angular 

position at Re=350. 

 

Based on the results presented in Table 2, all schemes 

reach the grid-independent study seven times faster 

than the upwind differencing scheme. From Figs. (10–

13) it’s not recommended to use the upwind 

differencing scheme with the skewed flow. 

 

 

 

 

Table 2. Computational time and number of iterations for different discretization schemes at different grid sizes for 

a curved cavity at Re=350. 

Number of 

grids 

UDS UDS–ND QUICK CDS  

TIME 

(sec.) 

No. of 

iterations 

TIME 

(sec.) 

No. of 

iterations 

TIME 

(sec.) 

No. of 

iterations 

TIME 

(sec.) 

No. of 

iterations 

52×52 5.539 696 6.866 831 6.853 827 6.58 826 

102×102 49.02 1626 53.483 1754 54.801 1751 52.73 1751 

134×134 113.586 2220 118.79 2303 125.317 2303 125.108 2302 

 

3.1.3. Statistical Analysis 

The comparison between different discretization 

schemes, shown in Figs. (10–13), can show that, the 

upwind differencing scheme is the worst scheme 

compared with the others scheme. But the difference 

between UDS-ND, QUICK, and CDS is very small 

and can’t be observed from the figures. Therefore, 

some statistical parameters are calculated to evaluate 

the performance of these schemes in the curved cavity.  

The Absolute Average Relative Percentage Error 

(AAPE) can be calculated as, 

𝐴𝐴𝑃𝐸 = 100 ×
1

𝑁
∑|𝐸𝑖|

𝑁

𝑖=1

 (17) 

Where N is the number of data points and Ei is the 

relative error at any position (i), which calculated from 

the relation: 

𝐸𝑖 = [
(𝑈)𝑎𝑐𝑡,𝑖 − (𝑈)𝑒𝑠𝑡,𝑖

(𝑈)𝑎𝑐𝑡,𝑖
] (18) 

Where (U)act is the actual velocity from the 

experimental data, (U)est is the estimated velocity from 

the numerical. 

The Root Mean Square Error (RMSE) can be 

calculated from: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑[(𝑈)𝑎𝑐𝑡,𝑖 − (𝑈)𝑒𝑠𝑡,𝑖]

2
𝑁

𝑖=1

 (19) 

The Correlation Coefficient (R) is 

𝑅

=
∑ [(𝑈)𝑎𝑐𝑡,𝑖 − (𝑈)𝑎𝑐𝑡] [(𝑈)𝑒𝑠𝑡,𝑖 − (𝑈)𝑒𝑠𝑡]
𝑁
𝑖=1

√∑ [(𝑈)𝑎𝑐𝑡,𝑖 − (𝑈)𝑎𝑐𝑡]
2

𝑁
𝑖=1

√∑ [(𝑈)𝑒𝑠𝑡,𝑖 − (𝑈)𝑒𝑠𝑡]
2

𝑁
𝑖=1

 
(20) 

Where (𝑈)𝑎𝑐𝑡  is the average of actual velocity, and 

(𝑈)𝑒𝑠𝑡is the average of estimated velocity. 
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Standard Deviation (SD) 

𝑆𝐷 = [
𝑁∑ 𝐸𝑖

2𝑁
𝑖=1 − (∑ 𝐸𝑖

𝑁
𝑖=1 )2

𝑁2
]

1
2

 (21) 

All the previous statistical parameters are tabulated in 

Tables 3 and 4 for transverse and radial velocity 

components, respectively, at Re=350. 

The error of upwind with numerical diffusion, Quick 

and CDS is very close to each other and less than the 

upwind differencing schemes error represented by 

AAPE and RMS as shown in Tables 3 and 4. QUICK 

is better than CDS and upwind differencing scheme in 

this test case, this conclusion agreed with old 

numerical studies for non-orthogonal grids as in 

Huang, et al. [6], Choi, et al. [24], Roychowdhury, et 

al. [21] and, Paramane and Sharma [26]. 

Upwind with numerical diffusion is the better scheme 

than the other schemes (has smallest AAPE, RMS and 

has the largest R) also gives a grid-independent at a 

coarse grid with less time as shown in Fig. 11 and 

Table 2. Also, it’s a lower order convective scheme as 

the original upwind differencing scheme which gives 

a more stable solution than the higher-order ones as 

QUICK and CDS. 

Table 3. Statistical parameters for transverse velocity in a curved cavity at Re=350 

 APPE RMS R SD 

UDS 25.46664579 0.033716443 0.993949726 0.385060598 

UDS-ND 22.74733212 0.022909984 0.99641833 0.402398743 

QUICK 23.37716593 0.023205613 0.996313325 0.414064691 

CDS 23.8307308 0.023513988 0.996196461 0.421095428 

 

Table 4. Statistical parameters for radial velocity in a curved cavity at Re=350 

 APPE RMS R SD 

UDS 22.0034606 0.027660256 0.988904576 0.300988579 

UDS-ND 13.33872047 0.016226453 0.995347265 0.251521921 

QUICK 13.78733192 0.016775706 0.994972828 0.258583618 

CDS 13.98443056 0.017133188 0.994653609 0.258176129 

 

3.1.4. Comparison with other numerical studies: 

A comparison with published numerical solution 

based on different numerical techniques or different 

governing equations will be presented in this section 

to show the difference between the present work and 

other studies. 

Although the numerical solution for the lower 

Reynolds number gives a very good prediction for the 

two components of velocity, the numerical results 

given by Fuchs and Tillmark [32] at the first two 

positions (θ=-20, -10) shows a large difference with 

their experimental data. The present work gives a 

better prediction for the velocity component especially 

for the radial component at θ=-10 than their work, as 

shown in Fig. 14. 

 
a) 𝜃 = −20 

 
b) 𝜃 = −10 

Fig. 14. Comparison predicted radial velocity and 

numerical solution based in polar coordinates with 

(ψ-ω) formulation given by [32] at Re=60 at different 

positions 

Figure 15 shows that the results of the present study 

are very close with the numerical solution of many 

works which used the polar coordinates with stream 

function - vorticity formulations at Re=350. The 

results show a small difference between the present 

work and that obtained by stream function-vorticity 

formulations. However, the stream function - vorticity 

formulations and polar coordinates are not suitable for 

general-purpose codes. 
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a)  Transverse velocity 

 
b) Radial velocity 

Fig. 15. Comparison between published numerical 

solution based in polar coordinates with (ψ-ω) 

formulation and the present study at Re = 350 and 

θ=0o. 

The solution based on body-fitted coordinates 

transformation for the Cartesian governing equations 

given by Kooshkbaghi and Lessani [30] and Sen and 

Kalita [41] are compared with the present study, as 

presented in Fig. 16. There is a good agreement 

between the present study and those given by 

Kooshkbaghi and Lessani [30] and Sen and Kalita 

[41]. The body-fitted coordinates are more general 

than the polar coordinates with stream function-

vorticity formulations, but the transformed equation 

has more terms than the original Cartesian equations. 

These terms will increase the computation times 

needed for the solution and increase the programming 

effort. Also, the non-orthogonal grids give a chance 

for the unphysical solution as mentioned by Ferziger 

and Peric [4].  

Darbandi and Vakilipour [39] presented a solution 

with Cartesian coordinate equations and applied a 

pressure-weighted upwinding scheme for the 

unstructured grid. A comparison between the present 

results and that of Darbandi and Vakilipour [39] is 

depicted in Fig. 17. It can be seen from this figure that 

the present results are in close agreement with those of 

Darbandi and Vakilipour [39]. 

From the previous discussion, using the finite volume 

method for a Cartesian coordinate will give more 

generality than the polar coordinates and body-fitted 

coordinates. The upwind differencing scheme with 

numerical diffusion is the better discretization scheme 

for the convective term as it gives better accuracy than 

other schemes and gives a minimum computation time 

for the skewed velocity flows. 

 

     
a)  Transverse velocity 

 
b) Radial velocity 

Fig. 16. Comparison between published numerical 

solution based in Cartesian coordinates with body 

fitted coordinates transformation and the present 

study at Re=350 and θ=0o. 

  
a) Transverse velocity  
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b) Radial velocity 

Fig. 17. Comparison between published numerical 

solution based in Cartesian coordinates with finite 

element method and the present study at Re=350 and 

θ=0o. 

3.2 Test case 2 

3.2.1 Grid independent study 

A grid-independent study for the four schemes had 

been done to the skewed cavity to test the effect of the 

discretization scheme on the non-orthogonal grids. 

Figure 18 shows that the upwind differencing scheme 

requires a fine grid (302×302) to give a grid-

independent solution, as shown in Fig. (18-a). All 

other schemes reach the grid-independent at a coarse 

grid than the upwind (202×202) as shown in Figs. 18(b 

to d). The CPU time necessary for the different 

schemes at different grid sizes is shown in Table 5. 

The number of iteration and the CPU time is very close 

between all discretization schemes. The CDS and 

upwind with numerical diffusion are the better 

schemes from both grid-independent and CPU time. 

Paramane and Sharma [26] reported that the QUICK 

scheme has a very large time as the grid becomes finer.  

 
a) UDS 

 
b) UDS-ND 

 
c) QUICK 

 
d) CDS 

Fig. 18. Effect of different grid size on the horizontal 

velocity component for different discretization 

schemes. 

0

0.05

0.1

0.15

1 1.2 1.4 1.6 1.8 2



Ramzy et al.  " Evaluation of Different Discretization Schemes for Non-Orthogonal Grids and Highly Skewed Flow" 

                                  ERJ, Menoufia University, Vol. 46, No. 4, October 2023                                  533 

 

Table 5. computational time and number of iterations for different discretization schemes at different grid sizes for 

skewed cavity 

Number 

of grids 

UDS UDS–ND QUICK CDS  

TIME (sec.) 
No. of 

iterations 
TIME (sec.) 

No. of 

iterations 
TIME (sec.) 

No. of 

iterations 
TIME (sec.) 

No. of 

iterations 

52×52 5.533 704 5.782 719 6.318 725 5.661 718 

102×102 71.876 2779 82.336 2804 89.486 2803 83.299 2803 

202×202 395.685 4641 399.379 4662 452.818 5000 395.232 4661 

302×302 1699.379 8661 1682.843 8686 2126.94 10000 1671.463 8686 

 

Table 6. Maximum and minimum stream function, ψ and their locations 

Study 
Maximum streamline Minimum streamline 

Value×105 Location Value×102 Location 

Demirdžiü et al. [18] 3.68310 0.33867 0.14308 -7.02260 1.11 0.54638 

Present study (UDS) 3.51790 0.33818 0.14318 -6.97718 1.11525 0.55025 

present study (UDS-

ND) 
3.68336 0.33818 0.14318 -6.99917 1.11025 0.54625 

present study 

(QUICK) 
3.51076 0.33818 0.14318 -7.01040 1.11288 0.54788 

present study (CDS) 3.38390 0.33818 0.14318 -6.99918 1.11525 0.55025 

 

3.2.1. Comparison with benchmark solution 

The present results for vertical and horizontal velocity 

components are compared with the benchmark 

solution given by Demirdžiü et al. [18], as shown in 

Fig. 19. It can be seen from this figure that all schemes, 

when a grid-independent solution is reached, give 

nearly the same results. The magnitude of maximum 

and minimum values of stream function along with 

their locations are given in Table 6 and the stream 

function contours are presented in Fig. 20. It can be 

seen from these results that all the tested schemes 

produce acceptable results as compared with the 

benchmark solution.  

     
a)  Horizontal velocity 

  

 
b)  Vertical velocity 

Fig. 19. Effect of different discretization schemes on 

the velocity component in skewed cavity. 

 
Fig. 20. Comparison between predicted streamlines 

(dashed lines) and benchmark solution given by Ref. 

[18] (solid lines). 

 

 

 

3.2.2. Statistical Analysis 

After reaching the grid independence, all schemes give 

nearly the same results. Statistical analysis results are 



Ramzy et al.  " Evaluation of Different Discretization Schemes for Non-Orthogonal Grids and Highly Skewed Flow" 

                                  ERJ, Menoufia University, Vol. 46, No. 4, October 2023                                  534 

 

presented in Tables 7 and 8 for both horizontal and 

vertical velocity components. For the horizontal 

velocity component, the UDS-ND gives the best 

results. On the other hand, UDS and QUICK schemes 

give the best results for the vertical velocity 

component while the upwind with numerical diffusion 

and CDS are close to each other in accuracy. However, 

it was previously shown in Table 5 that the upwind 

differencing requires approximately twice the number 

of iteration and 425% of the computational time of the 

upwind with numerical diffusion. Thus, the upwind 

differencing scheme is not recommended for flow 

problems with non-orthogonal grids. Paramane and 

Sharma [26] showed that the accuracy of the CDS and 

QUICK is less than the upwind differencing scheme. 

But their study had been done for a smaller number of 

grids and the accuracy was calculated only from the 

mean absolute relative error for the stream functions. 

Overall, the UDS-ND is recommended for non-

orthogonal grids.  

 

 

 

Table 7. Statistical analysis for horizontal velocity in skewed cavity for all discretization schemes 

 APP APPE RMS R SD 

UDS 1.358749227 2.62814030 0.001760236 0.9999658020 0.031767379 

UDS-

ND 
1.307173018 2.29146904 0.002114573 0.999987910 0.030129066 

QUICK 1.307150356 2.34460594 0.001957263 0.999976238 0.029105899 

CDS 1.310842812 3.00676636 0.002121171 0.999957583 0.037139075 

 

Table 8. Statistical analysis for vertical velocity in a skewed cavity for all discretization schemes. 

 APP APPE RMS R SD 

UDS 4.061798749 0.52979984 0.00308591 0.9999523727 0.021586863 

UDS-

ND 
5.207613295 0.67925391 0.003040123 0.999937540 0.056306557 

QUICK 4.307150008 0.56180217 0.002630667 0.999936989 0.040670632 

CDS 5.236000757 0.68295662 0.00304057 0.999937184 0.057161916 

 

4.Conclusions 

Four different discretization schemes were evaluated 

in terms of accuracy, the number of iterations, and 

computation time for two test cases. These schemes 

are upwind differencing scheme (UDS), upwind 

differencing scheme with numerical diffusion (UDS-

ND), central differencing scheme (CDS), and 

Quadratic upwind interpolation for convective 

kinematics (QUICK). The comparison between the 

selected schemes for highly skewed flow in curved 

cavity indicated that the upwind differencing scheme 

with numerical diffusion is the best choice in terms of 

accuracy and computational cost. In addition, the 

present study indicates the current procedure which is 

more suitable for general purpose codes can produce 

computational results which are in close agreement 

with those obtained from body fitted and polar 

coordinates system. For the case that included non-

orthogonal grids in the skewed cavity, all the tested 

schemes produce close results when they were 

compared with the benchmark solution. However, the 

upwind differencing scheme with numerical diffusion 

requires fewer number of iteration and shorter 

computational time. 

 

 

Nomenclature 

φ 

μ 

qφ 

n 

The generalized dependent variable 

The kinematic viscosity [m2 s−1] 

The source term 

The unit normal vector outward from 

the center of the cell face 

 

f=e, w, n, s 

 

Subscripts  

L 

H 

The cell face center's properties 

 

The lower order differencing scheme 

(upwind) 

the higher-order scheme 
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