Mansoura University
Faculty of Engineering
Dept. of Prod. \& Mech. Design

$2^{\text {nd }}$ Term 2012/2013
Machine Tool Design 2
26/05/2013

Question 1: (30 marks)

a) A machine tool has a bed length of 7.5 m and connected to the concrete by 14 bolts. This machine tool has been designed with a target stiffness of $672 \mathrm{MN} / \mathrm{m}$, with $\mathrm{m}=1500 \mathrm{~m}^{-1}, \sigma_{\mathrm{B}}=$ $2 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}, \mathrm{~S}_{\mathrm{B}}=22.2 \mathrm{MN} / \mathrm{m}$, and $\mathrm{S}_{\mathrm{C}}=24 \mathrm{MN} / \mathrm{m}$. Suppose that with infinite joint stiffness, this machine tool has an overall stiffness of $1.91 \times 10^{3} \mathrm{MN} / \mathrm{m}$ and equivalent vertical deflection ' Δ ' of 0.156 mm . For the actual machine tool find the subsoil stiffness, the joint stiffness, the bolt size, and the vertical deflection ' Δ '. Note that the available bolt cross-sectional areas are $113.10 \mathrm{~mm}^{2}$, $153.94 \mathrm{~mm}^{2}$, and $254.47 \mathrm{~mm}^{2}$ for M14, M16, and M20 respectively. (15 marks)
b) A machine tool with a metallic bed was used for certain cutting condition. The starting cutting point was at $e_{x}=50 \mathrm{~mm}, e_{y}=1000 \mathrm{~mm}$ and $e_{z}=120 \mathrm{~mm}$. The measured cutting force components were 1.0 K.N, 2.0 K.N. and $0.6 \mathrm{~K} . \mathrm{N}$. in X, Y and Z direction respectively. Given are: $E_{2}=24 \times 10^{9} \mathrm{~N} . \mathrm{m}^{-2}, v_{2}=0.16, \mathrm{~b} / \mathrm{d}=1.5, \mathrm{k}_{1}=0.196, \mathrm{E}_{1}=2.1 \times 10^{9} \mathrm{KN} . \mathrm{m}^{-2}, v_{1}=0.27$. Also, given that $(\mathrm{El})_{1}=0.4(\mathrm{El})_{2},(\mathrm{GA})_{1}=2.5(\mathrm{GA})_{2},(\mathrm{GK})_{1}=0.4(\mathrm{GK})_{2}$, and the beam length is 1000 mm . Assume any required data if necessary. Calculate the concrete depth to fulfill target stiffness in X-dir \geq $2 \times 10^{4} \mathrm{KN} / \mathrm{m}$. 15 marks)

Question 2: (30 marks)

Re-draw the figures a, b, and c then determine the suitable acceptance test for each figure. 10 marks each)

Question 3: (30 marks)

When designing two jointed structures, one of cantilever with end point load and the other of fixed beam with central load. Assume for both structures, that $I_{s} / I_{j}=4 / 9, E=210000 \mathrm{~N} / \mathrm{mm}^{2}, P_{m}=20$ $\mathrm{N} / \mathrm{mm}^{2}$, cantilever beam length $=200 \mathrm{~mm}$, the surface finish for both joints $\mathrm{m}=100 \mathrm{~mm}^{-1}$, and the fixed to cantilever beam length ratio is 1.5 . The joint bending deflections required to be the same for both structures. Find the ratio of the solid diameters (14 marks). If the solid diameters ratio greater than 1.8 , find the mathematical relationship between the surface finish of the two jointed structures that can fulfill the above requirements (16 marks).

Question 4: (30 marks)

a) When a certain machine tool was used to manufacture a certain workpiece at 300 r.p.m., it was found that the cutting mode was a wave removing one. At certain position during cutting, the instantaneous shear angle was 35°, the instantaneous undeformed chip thickness was 1.5 mm , and the resultant chip taper angle δ_{0} was -15°. If the tool has a normal rake angle of $+10^{\circ}$, clearance angle of $+6^{\circ}$ with an average undeformed chip thickness of 1.3 mm and chip width of 2.5 mm . Graphically find the instantaneous slope angle (10 marks). Also, calculate the average shear angle (5 marks).

د/ حازم السبد الشُوربجى
b) Prove analytically that the chip taper angle can be obtained by:

$$
\cot \delta_{0}=\tan \left(\phi-\gamma_{n}\right)\left[\frac{2 \sin \phi \sin \left(\phi-\bar{\delta}_{C}\right)}{\sin 2\left(\phi-\gamma_{n}\right) \sin \delta_{c}}-1\right]
$$

Given are:

$$
\begin{array}{ll}
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta & \sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta \\
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta & \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta
\end{array}
$$

Useful Relations

For jointed cantilever with end point load; $\frac{\delta_{j}}{\delta_{b}}=\frac{3 E}{m P_{m}} \cdot \frac{I_{s}}{I} \cdot \frac{1}{L}$
For jointed fixed beam with central load; $\frac{\delta_{j}}{\delta_{b}}=\frac{6 E I_{s}}{m P_{m} I_{j}\left[L+\left(2 E I_{s} / m P_{m} I_{j}\right)\right]}$ and $\delta_{b}=\frac{W L^{3}}{192 E I_{s}}$

The component deflections at the cutting point due to the effect of the cutting forces are:

$$
\begin{aligned}
& \Delta_{x}=P l^{3}\left[\frac{L\left(\frac{1}{3}-\gamma+\gamma^{2}\right)+N \alpha\left(\frac{1}{2}-\gamma\right)}{\left(E I_{y}\right)_{1}+\left(E I_{y}\right)_{2}}+\frac{\beta(L \beta-M \alpha)}{(G K)_{1}+(G K)_{2}}\right]+P l\left[\frac{L}{\left(\frac{G A}{F_{x}}\right)_{1}+\left(\frac{G A}{F_{x}}\right)_{2}}\right] \\
& \Delta_{y}=P l^{3}\left[\frac{M\left(\frac{1}{3}-\gamma+\gamma^{2}\right)+N \beta\left(\frac{1}{2}-\gamma\right)}{\left(E I_{x}\right)_{1}+\left(E I_{x}\right)_{2}}+\frac{\alpha(M \alpha-L \beta)}{(G K)_{1}+(G K)_{2}}\right]+P l\left[\frac{M}{\left(\frac{G A}{F_{y}}\right)_{1}+\left(\frac{G A}{F_{y}}\right)_{2}}\right] \\
& \Delta_{z}=P l^{3}\left[\frac{N \alpha^{2}+L \alpha\left(\frac{1}{2}-\gamma\right)}{\left(E I_{y}\right)_{1}+\left(E I_{y}\right)_{2}}+\frac{N \beta^{2}+M \beta\left(\frac{1}{2}-\gamma\right)}{\left(E I_{x}\right)_{1}+\left(E I_{x}\right)_{2}}\right]+P l\left[\frac{N}{(A E)_{1}+(A E)_{2}}\right] \\
& R=\frac{I_{x}}{K}, T=\frac{I_{y}}{K} \text {, and } \psi=\frac{K}{l^{2} A}
\end{aligned}
$$

\# Notice: for second order equation $\left(a x^{2}+b x+c=0\right)$ the solving roots are given as:

$$
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Good Luck

