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ABSTRACT 
 
Methylene blue (MB) is currently used to treat methemoglobinemia, a blood disorder. 
But because high concentrations of methylene blue were known to damage the brain, 
no one thought to experiment with low concentrations. The study aimed to evaluate 
the possible protective effect of methylene blue against scopolamine induced- amnesia 
in adult rats. Methylene blue (2 and 5mg/kg, i.p.) was administered separately or 
concurrently with scopolamine administration (1mg/kg, i.p). Results showed that 
scopolamine induced amnesia in passive avoidance task, increased the catalytic 
activity of total cholinesterase and decreased content of acetylcholine depressed the 
level of reduced glutathione (GSH) and total antioxidant activity in the hippocampus 
and brain cortex. Methylene blue dose-dependently inhibited the enzymatic activity of 
total cholinesterase and increased the acetylcholine content, increased GSH content 
and total antioxidant activity in the hippocampus and brain cortex. Concurrent 
treatment of MB dose-dependently minimized both amnesic and anti-cholinergic 
effect of scopolamine. The study indicated that MB could protect against the 
scopolamine effects at low doses through its enhancing effect on cholinergic 
pathways and anti-oxidative activities. Methylene blue with its neuroprotective effects 
and could thus act as disease modifiers in patients, slowing the progression of 
behavioral deterioration since acetylcholinesterases themselves could contribute to 
the degenerative process.  
Keywords: Alzheimer- scopolamine- methylene blue- cholinergic system- oxidative 
stress. 
 

INTRODUCTION 
 

Alzheimer’s disease is a 
progressive, ultimately fatal, disorder 
in which certain types of nerve cells in 
particular areas of the brain 
degenerate and die for unknown 
reasons(1). However, it has been 
suggested that oxidative damage is 
one of the most integral neurotoxic 
mechanisms in both amyloid β� (Aβ) 

accumulation and tau pathologies(2,3,4). 
Specifically, increased oxidative 
damage to brain lipids, carbohydrates, 
proteins and DNA has been reported 
to be involved in AD pathogenesis(5,6). 
The vulnerable brain regions include 
the hippocampus and cortical area 
comprising cell populations involved 
in catecholaminergic, serotonergic 
and cholinergic neurotransmission(7-9). 
The hippocampus is the processing 
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center for different information, 
experience and memory 
consolidation(10). Various 
environmental stimuli, such as 
exploration, stress, or learning, 
increase acetylcholine (ACh) release 
to activate hippocampal functions(11). 
In addition, the drugs acting on the 
cholinergic system can improve or 
worsen cognitive abilities(12). 
Consistently, the postmortem brain 
from Alzheimer’s disease patients 
shows several indices of reduced 
cholinergic function, including 
deficits in the enzyme responsible for 
the synthesis of acetylcholine (ACh), 
choline acetyl-transferase, reduced 
ACh release, and loss of cholinergic 
neurons in the specific brain areas (4).  

Scopolamine is muscarinic 
receptor antagonist with amnestic 
property that has been used for 
decades in experimental animals to 
induce impairment in their 
performance of a variety of tasks 
requiring intact working and reference 
memory(13,14). For many years, the 
amnestic action produced in animals 
by the administration of centrally 
acting muscarinic cholinergic 
antagonists, particularly scopolamine, 
has been a widely used model for the 
characterization of potential 
cognition-enhancing drugs(15). 
However, the experimental models of 
memory impairment have been 
suggested to be of limited value 
because they fail to replicate the 
pathological aspects and the 
progressive degenerative nature of 
Alzheimer’s disease(16). Despite this 
limitation, scopolamine-induced 
memory impairment, particularly 
when coupled with a version of the 
inhibitory avoidance task provides a 

relatively rapid phenotypic screening 
tool for drug discovery in the field of 
cognition enhancement. 

Methylene blue (MB) is a 
diaminophenothiazine that has been in 
clinical use for approximately 100 
years to treat a variety of ailments. 
MB treats congenital and poison-
induced methemoglobinemia; 
prevents the side effects of 
chemotherapy(17,18), and treats septic 
shock(19). The dose of MB usually 
used in clinical settings is between 1 
and 2 mg/kg/day(20); and signs of 
toxicity start at higher levels (7.5 
mg/kg/day)(21).  

The therapeutic potential of MB 
also has been demonstrated in models 
for specific ailments. MB protects 
against endotoxin-induced lung 
injury, bacterial lipopolysaccharide- 
induced fever (22, 23), and cyclosporine 
injury to the kidney (24). Methylene 
blue administration in vivo appears to 
benefit the central nervous system and 
cognitive function(25), protects from 
methylmalonate induced seizures(26), 
and protects from the cognitive 
decline inflicted by inhibitors of 
complex IV(27).  

The present study aims to study 
the possible protective effect of MB in 
scopolamine- induced amnesia in rats 
and explore the neurochemical basis 
of this effect. 
 
MATERIALS & METHODS 

 
Experimental animals: male adult 

Sprague Dawley rats (150-200 g) 
were kindly provided from our 
breeding center at NODCAR and kept 
for a week for acclimatization under 
normal conditions and constant 
temperature (25±1C°) with ad libitum 
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water and food until starting the 
experiment.  
Chemicals:  

All chemicals, unless specified 
otherwise, were purchased form 
Sigma-Aldrich Chemical Co. (St. 
Louis, MO). Scopolamine and 
methylene blue were dissolved in 
saline. 
Animal grouping: 

A total number of forty eight 
Sprague Dawley rats with an average 
weight of 175 ± 5 g, was divided into 
six groups: 
 Control group: the rats 

intraperitoneally administered 1ml 
saline solution. 

 Methylene group-2: the rats were 
intraperitoneally administered 
single dose of methylene blue 
(2mg/g). 

 Methylene group-5: the rats were 
intraperitoneally administered 
single dose of methylene blue 
(5mg/g). 

 Methylene group-2 plus 
scopolamine:  the rats were 
intraperitoneally administered 
single dose of methylene blue (2 
mg/g), followed by scopolamine 30 
minutes later (1mg/kg, i.p).  

 Methylene group-5 plus 
scopolamine: the rats were 
intraperitoneally administered 
single dose of methylene blue 
(5mg/g), followed by scopolamine 
30 minutes later (1mg/kg, i.p).  

 Scopolamine group: the rats were 
intraperitoneally administered 
single dose of scopolamine 
(1mg/kg).  

Passive avoidance test 
Passive avoidance test, which is a 

fear-motivated test classically used to 
assess the effect of different 

treatments on memory (28). The 
apparatus was equipped with identical 
illuminated and non-illuminated boxes 
with a guillotine door (5×5cm). The 
illuminated compartment 
(20×20×20cm) contained a 50-W 
bulb, and the floor of nonilluminated 
compartment (20×20×20cm) was 
composed of 2 mm stainless steel rods 
spaced 1 cm apart. A rat was gently 
placed in the illuminated compartment 
for an acquisition trial, and the door 
between the two compartments was 
opened after 10 sec. When the rat 
entered the dark compartment, the 
door was closed and an electrical foot 
shock (0.5 mA, 3 sec duration) was 
delivered through the stainless steel 
rods. Twenty-four hours after this 
acquisition trial, the mouse was again 
placed in the illuminated compartment 
for a retention trial. The time taken for 
a mouse to enter the dark 
compartment after door opening was 
defined as latency time for both 
acquisition and retention trials. 
Latency for entering the dark 
compartment was recorded up to 300 
sec. If a rat did not enter the dark 
compartment within 300 sec., the rat 
was removed and assigned a latency 
score of 300 sec. Methylene blue and 
scopolamine were dissolved in 0.9% 
saline. Methylene blue doses were 
given 1 h after the acquisition trial. 
Memory impairment was induced in 
rat with scopolamine (1 mg/kg, i.p.) 
30 min after methylene blue 
treatment. The control group received 
saline solution only. Following the 
behavioral study, the rats were 
decapitated and brain was dissected 
into cortex and hippocampus.  
- Acetylcholine was determined 
according to HPLC(29). Total 
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cholinesterase activity was determined 
according to method of Ellman(30). 
Reduced glutathione levels were 
determined according to the 
Jayatilleke and Shaw(31). Total 
antioxidant activity was determined 
using the colorimetric method of 
Blois(32). 
Statistical Analysis. 

Data presented as means ± SE. 
One-way ANOVA followed by LSD 
test were used to evaluate significant 
differences from the control and SCP- 
treated groups. P< 0.05 was 
considered to be statistically 
significant. Statistical processor 
system support (SPSS) for Windows 
software, release 10.0 (SPSS, Inc, 
Chicago, IL) was used. 
 

RESULTS 
 

Data in tables 1, 2 and 3 show 
that scopolamine treatment 

significantly increased ChE activity 
and decreased ACh content, and 
depressed total antioxidant activity 
and GSH level in brain cortex and 
hippocampus. Methylene blue 
treatment dose dependently decreased 
ChE activity and increased ACh 
content, total antioxidant activity and 
GSH content in brain cortex and 
hippocampus compared with control 
group (Table 1, 2 and 3). Whereas, 
MB pretreatment dose dependently 
normalized ChE activity and levels of 
ACh, GSH and total antioxidant 
activity in brain cortex and 
hippocampus (Tables 1, 2 and 3). In 
passive avoidance task, scopolamine 
administration decreased the retention 
time. Methylene blue treated rats 
exhibited higher retention time 
compared with control and 
scopolamine treated rats. Pretreatment 
of MB dose dependently attenuated 
the scopolamine effects (Fig.1). 

 
 
 
Table (1): Effect of Methylene Blue (MB) Pre-treatment (2 and 5 mg/ kg, i.p) (MB-2 
and MB-5, respectively) on Acetylcholine (ACh) Content and Total Cholinesterase 
(ChE) Activity in Brain Cortex of Scopolamine (SCP, 1mg/kg, i.p.) -Treated Rats. 
Groups ChE  

(U/g tissue wt) 
ACh 
(µg/g tissue wt) 

Control 
MB-2 
MB-5 
MB-2+SCP 
MB-5 +SCP 
SCP 

4040.50 ±74.70 
3240.83 ± 60.31 *, + 
2941.50 ± 22.69 *, + 
4428.17 ± 338.60 + 
4588.33 ± 175.44 *, + 
5888.33 ± 242.15 * 

              1.63 ± 0.08 
1.82 ± 0.06 *, + 
2.27 ± 0.06 *, + 
1.41 ± 0.05 *, + 
1.60 ± 0.03 + 
0.74 ± 0.06 * 

Data presented as means ± S.E. (n=8), P< 0.05 was considered to be statistically 
significant 
* Significant different from control group 
+ Significant different from scopolamine treated rats  
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Table (2): Effect of Methylene Blue (MB) Pre-treatment (2 and 5 mg/ kg, i.p) (MB-2 
and MB-5, respectively) on Acetylcholine (ACh) Content and Total cholinesterase 
(ChE) Activity in Brain Hippocampus of Scopolamine (SCP, 1 mg/kg, i.p.) - Treated 
Rats. 
Groups ChE  

(U/g tissue wt) 
ACh 
(µg/g tissue wt) 

Control 
MB-2 
MB-5 
MB-2+SCP 
MB-5 +SCP 
SCP 

3870.00 ± 75.63 
3150.00 ± 81.65 *, + 
2743.67 ± 90.20 *, + 
4270.33 ± 94.53 *, + 
3727.33 ± 101.95 + 
6031.00 ± 138.94 * 

1.63 ± 0.06 
1.95 ± 0.07 *, + 
2.28 ± 0.18 *, + 
1.54 ± 0.04 + 
1.58 ± 0.06 + 

0.78 ± 0.04 * 
Data presented as means ± S.E. (n=8), P< 0.05 was considered to be statistically 
significant 
* Significant different from control group 
+ Significant different from scopolamine treated rats  
 
 
 
Table (3): Effect of Methylene Blue (MB) Pre-treatment (2 and 5 mg/ kg, i.p) (MB-2 
and MB-5, respectively) on Total antioxidant activity and Reduced glutathione (GSH) 
Content in Brain Cortex and Hippocampus of Scopolamine (SCP, 1 mg/kg, i.p.) -
Treated Rats. 

Brain Areas Groups 
 

Total Antioxidant Activity  
(% inhibition of DPPH) 

Reduced glutathione 
Ug/g 

Cortex Control 
MB-2 
MB-5 
MB-2+SCP 
MB-5+SCP 
SCP 

59.17 ± 1.54 
77.50 ± 4.23 *, + 
83.67 ± 3.93 *, + 
57.50 ± 2.81 + 
55.00 ± 3.16 + 
40.00 ± 2.24 * 

1.51 ± 0.05 
1.69 ± 0.05 *, + 
1.78 ± 0.04 *, + 
1.44 ±0.05 + 
1.55 ± 0.04 + 
1.17 ± 0.04 * 

Hippocampus Control 
MB-2 
MB-5 
MB-2+SCO 
MB-5+SCO 
SCO 

60.83 ± 5.54 
73.00 ± 3.65 *,+ 
78.00 ± 2.82 *,+ 
55.17 ± 2.89 + 
62.67 ± 2.19 + 
40.00 ± 3.87 * 

1.61 ± 0.05 
1.77 ± 0.04 *, + 
1.89 ± 0.03 *,+ 
1.53 ± 0.04 + 
1.69 ± 0.06 + 

1.24 ± 0.03 * 
Data presented as means ± S.E. (n=8), P< 0.05 was considered to be statistically 
significant 
* Significant different from control group 
+ Significant different from scopolamine treated rats.  
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Fig. 1. Effect of Methylene Blue (2 and 5 mglkg, ip) (MB-2 and 
MB-5, respectively) on Scopolamine (SCP,1 mg/kg, i.p ) - 

induced memory Imapairment in the Passive Avoidance Test
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Data presented as means ± S.E. (n=8), P< 0.05 was considered to be statistically 
significant 
* Significant different from control group 
+ Significant different from scopolamine treated rats  
 
 

DISCUSSION 
 

The present study showed that 
scopolamine treated rats exhibited 
decreased level of ACh and increased 
catalytic activity of total 
cholinesterase in both brain cortex and 
hippocampus, due to the increased 
turn over of ACh as a result of ChE 
activation under scopolamine 
treatment. It might be speculated that 
scopolamine reversibly binds to some 
allosteric site in ChE molecule 
causing a change in its secondary 
structure leading to increased catalytic 
activity and decreased ACh content. 
In accordance, several studies 
indicated that scopolamine 
administration leads to the activation 
of AChE enzyme (33-35). In addition, 
scopolamine induces oxidative stress 
possibly by impairing mitochondrial 
function, and/or AChE activation and 
subsequent ACh depletion. 
Consistently to this interpretation, 

recent previous studies demonstrated 
the involvement of AChE activity in a 
cellular model of oxidative stress (36). 
In accordance, several studies liked 
the cholinergic dysfunction with the 
occurrence of oxidative stress (37,38).  
Besides, both cholinergic dysfunction 
and oxidative stress play reciprocal 
roles in Alzheimer disease (39). 

In the present study, methylene 
blue demonstrated an antioxidant 
effect and cholinergic 
neurotransmission potentiation 
through increasing GSH content and 
total antioxidant activity and 
inhibition of ChE activity and 
elevating ACh content in both brain 
cortex and hippocampus. In 
accordance, several studies indicated 
the antioxidant and the inhibitory 
effect of MB on ChE activity (40, 41).    

In addition, MB pretreatment 
antagonized scopolamine- induced 
cholinergic dysfunction and oxidative 
stress, in a dose dependent manner. 
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This effect might be due to the 
antioxidant and augmenting effect 
MB on cholinergic transmission. 
Because its redox potential is close to 
zero, MB is very efficient in cycling 
between oxidized and reduced forms 
by suitable redox centers and reducing 
agents such as those in the 
mitochondria(42). MB is efficiently 
reduced by NAD (P) H dependent 
dehydrogenases to form the colorless 
MBH2 (42). Electron delocalization in 
MB results in a partial positive charge 
located on both nitrogen and sulfur 
atoms, which may increase the 
permeability of MB through 
membranes. The lipid solubility of 
MBH2 is higher than for MB; thus, 
both forms enter the mitochondria (43). 
In accordance, several studies show 
that MB increases brain oxygen 
consumption, improves mitochondrial 
respiration and prevents free radical 
damage by serving as a redox 
compound at low doses and improves 
brain function (25,44- 47). In addition, 
methylene Blue (MB),is efficiently 
trapped in the brain and its 
concentration is over 10 times higher 
in the brain than in the circulation one 
hour after systemic administration (48), 
indicating a rapid and extensive 
accumulation in the nervous system. 
Moreover, MB has been used as a 
neuroprotective agent in drug- 
induced encephalopathy, dementia 
and manic-depressive psychosis (49). 

In the present study scopolamine 
treated group showed defective 
performance in passive avoidance 
task, indicating the occurrence of the 
amnesia.  This effect might be, at 
least, due to cholinergic dysfunction 
and/or oxidative stress. In accordance, 
previous studies indicated the 

amnestic effect of scopolamine (50-52). 
The observation that methylene blue 
treatment significantly activates 
memory and antagonized the amnestic 
effect of scopolamine is probably due 
to its activating effect of 
mitochondrial function and 
cholinergic up regulating effect in 
brain cortex and hippocampus. 
Consistent to this interpretation, 
several studies indicating the 
beneficial effect of MB with low 
doses on memory and brain 
function(42,46), by enhancing the 
cholinergic neurotransmission (12,53). 

 The study provides a 
demonstration of the neuroprotective 
effects of methylene blue in 
scopolamine-induced amnesia. Co-
administration of MB, within the safe 
range (2-5 mg/kg, i.p.), provided 
effective protection against oxidative 
stress and cholinergic dysfunction, the 
main culprits in Alzheimer's disease. 
Although methylene blue merely 
presents a protective potential and 
may not cure Alzheimer's disease, yet 
any drug that reverses symptoms, 
improves quality of life, delays 
neurodegeneration, and saves huge 
costs, represents an important step in 
progress towards curing Alzheimer's 
disease. 
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التأثيرات الوقائية لمادة المثيللين الازرق ضد فقدان الذاكرة الناجم عن حقن 
عقار سكوبولامين و ذلك عن طريق تثبيط انزيم كولين استيريز و منع الاجھاد 

  التأكسدي في الجزذان البالغة
 

  أحمد محمد شحاتة
  الھيئة القومية للرقابة و البحوث الدوائية -قسم الفسيولوجي

  
يثيلين الأزرق في علاج زيادة نسبة  ميتھيموجلوبين الدم، و لكن استخدام تركيزات عالية من الميثيلين يستخدم الم

تھدف الدراسة إلى تقييم التأثير الوقائي المحتمل للميثيلين . الأزرق يودي إلى تلف الدماغ و أضرار فسيولوجية ،
ويتم حقن الجرذان بمادة . بولامين في الجرذان البالغةالأزرق ضد فقدان الذاكرة الناجم من حقن عقار سكو

كجم ثم يتم  حقن عقار سكوبولامين في التجويف البريتوني / مجم ٥و  ٢الميثيللين الازرق بجرعة مقدارھا  
وأظھرت النتائج  حقن عقار سكوبولامين يؤدي الى فقدان الذاكرة في الاختبار . مجم ١بجرعة واحدة مقارھا 

جنب السلبي، وزيادة نشاط انزيم الكولين استيريز وانخفض إجمالي محتوى أستيل الكولين وانخفاض السلوكي الت
أدت المعالجة .مستوى الجلوتاثيون المختزل  و المجموع الكلي لمضادات الأكسدة  في قشرة الدماغ والحصين

المحتوى أستيل الكولين، وزيادة بمادة الميثيلين الازرق الى تثبيط النشاط الانزيمي للكولين استيريز وزيادة 
كما ادت المعالجة بمادة . محتوى الجلوتاثيون و المجموع الكلي لمضادات الأكسدة  في قشرة الدماغ والحصين

. الميثيللين الازرق الى منع تأثير عقار سكوبولامين في كل من فقد الذاكرة والاجھاد التأكسدي و المحور الكوليني
الميثيللين الازرق في الجرعات المنخفضة  يمكن أن يحمي من آثار سكوبولامين  و ذلك وأشارت الدراسة إلى أن 

الأزرق  ويمكن أن يساعد في ابطاء .  من خلال تأثيره على تعزيز المسار الكوليني والنشاط المضادة للأكسدة
    Alzheimer'sتطور تدھور الحالة الذھنية لدى المرضى بمرض ألزھايمر 


