INTEGRATED IMPACTS OF HUMIC ACID, HALOTOLERANT N₂ FIXERS AND NITROGEN APPLICATION ON WHEAT YIED (*Triticum aestivum L.*),YIELD COMPONENT AND NUTRIENT UPTAKE

 EI-Hamdi, Kh. H.¹; E. M. Selim² and Huda I. M. Husein¹
¹Soils Department, Faculty of Agriculture, Mansoura University
²Soils and Water Use Department, National Research Centre (NRC), Dokki, 12622, Cairo, Egypt.

ABSTRACT

To study the integrated impacts of halotolerant N₂ fixers and humic acid application on N – availability and nutrient contents of wheat crop (*Triticum Aestivum L*). CV Sakha 93 in asalt affected soil, two successive field experiments were conducted in El-Matarya District near Al Manzala Lake, Dakahlia Governorate during the winter of 2009-2010 and 2010-2011 seasons. Eighteen treatments were arranged in asplit-split block design, which were the simple possible combination between two treatments of humic acid (with (50 L fed⁻¹. & without) as the main plots, three treatments of bio inoculation (Non-inoculation, Azotobacter+ Azospirillum and Nostoc + Anabaena) as the sub plots and three levels of nitrogen fertilization (control, 40 and 80 Kg N fed⁻¹) as sub- sub plots. Each treatment was replicated three times. Thus, the total number of plots used for each season were 54 plots.

The results of this investigation revealed that:

- With adding humic acid, the mean values No. of grains spike⁻¹, spike length (cm), weight of 1000 seeds (g), grain yield (ardab fed⁻¹), straw yield (ton fed⁻¹), N, P and K-uptake (kg fed⁻¹) of grain, straw and whole plant at harvesting stage were significantly increased due to addition of humic acid.
- This investigation also indicated that an application of Azotobacter+ Azospirillum was more effective for increasing the No. of grains spike⁻¹, spike length (cm), weight of 1000 seeds (g), grain yield (ardab fed⁻¹), straw yield (ton fed⁻¹), N, P and K-uptake (kg fed⁻¹) of grain, straw and whole plant at harvesting stage than the other halotolerant N₂ fixers and this effect was significance during both seasons of the experimentation.
- Concerning the effect of N-fertilization the average values of No. of grains spike⁻¹, spike length (cm), weight of 1000 grains (g), grain yield (ardab fed⁻¹), straw yield (ton fed⁻¹), N, P and K-uptake (kg fed⁻¹) of grain, straw and whole plant at harvesting stage for wheat plant treated with 80 kg N fed⁻¹ doses of N-fertilization was more increased significantly than that treated with the untreated plant.
- With respect to the interactive effect between adding humic acid, halotolerant N2 fixers and nitrogen application found that with adding 4080 kg N fed⁻¹ of nitrogen fertilization mixed with Azt+Azs in presence of humic acid gave the highest value of No. of grains spike⁻¹, spike length (cm), weight of 1000 seeds (g), grain yield (ardab fed⁻¹), straw yield (ton fed⁻¹), N, P and K-uptakes (kg fed⁻¹) of grain, straw and whole plant at harvesting stage for wheat plant.
- Keywords: Humic acid, halotolerant N_2 fixers, N fertilization, wheat plants, salt affected soil, N,P and K uptake by wheat plant.

INTRODUCTION

Nowadays, great efforts are exerted in order to increase the amount of food in Egypt by applying recommended cultural practices push as using bio and chemical fertilizers for wheat crop production to decrease the gap between consumption and production (El-Zeky, 2005).

Humic substances are well known as complexing agents for transition metal cations, thereby facilitating enhanced uptake. Several researchers reported that high wheat yields require increases in N application and the excessive addition of this nutrient can contribute to watercourse pollution (Semenov *et al.*, 2007). Therefore, the use of high N rates that allow expressing yield potential of existing varieties in the actual market require careful and efficient management of nutrient partialization with the purpose of minimizing losses due to lixiviation during crop development, avoiding pollution of the underground water tables and its harmful effect on human health and environmental sustainability.

The halotolerant microorganisms are effective in the treatment of waste from tannery industry or pickle industry (Kubo *et al.*, 2001, Sivaprakasam *et al.*, 2008). These organisms are isolated from sources such as marine environment, soils, rhizosphere or industrial waste. They are also known to be the potential sources of extracellular enzymes with novel properties, useful for diverse industrial applications. Wheat (*Triticum aestivum, L.*) is one of the main cereal crops all over the world and one of the most important winter crops in Egypt. The main objective of this investigation is to study the integrated impacts of humic acid and N fertilization as well as halotolerant N₂ fixers application on N– availability and nutrient contents of wheat crop (Triticum Aestivum L). CV Sakha 93 in salt affected soils.

MATERIALS AND METHODS

Plant culture & experimental conditions

Three-factor experiment were conducted at El-Matarya District near Al Manzala Lake, Dakahlia Governorate, using the wheat crop (*Triticum aestivum L*) culivar Sakha 93 during the two 2009-2010 and 2010-2011seasons. The factors studied were humic acid, halotolerant N₂ fixers and soil nitrogen application on wheat yield and nutrient contents.

Three-factor experiment with 18 treatments were arranged in asplitsplit block design, which were the simple possible combination between two treatments of humic acid (with (50 L fed⁻¹. & without) as the main plots, three treatments of bio inoculation (Non-inoculation, Azotobacter+ Azospirillum and Nostoc + Anabaena) as sub plots and three levels of nitrogen fertilization (control, 40 and 80 Kg N fed-1) as sub- sub plots. Each treatment was replicated three times. Thus, the total number of plots used for each season was 54 plots. Every plot area of $4m^2$ (2 x 2 m) was build-up and the total area was 216 m².

Cultivation

Wheat seeds cv. Sakha 93 were planted on 15th November 2009 and 2010 in hills 20 cm apart on the middle of raw. Then, irrigation was carried out at field capacity. Wheat was irrigated after planting four times during the growing season. Some physical and chemical properties of the experimental soil are shown in table 1.

Table 1: Some physical and chemical properties of the experimental soil during season 2011.

Donth(om)	nH 4.2 F	ECdem ⁻¹		lons meq 100 g⁻¹ soil								
Depth(cm)	рп 1.2.5	ECUSIII	Ca ⁺⁺	Mg ^{⁺⁺}	Na⁺	K⁺	CO3 [¯]	HCO ₃	Cľ	So ₄ ⁼		
0-30	8.18	1.66	1.95	1.05	4.92	0.58	-	1.47	4.16	2.87		
30-60	8.12	1.83	2.12	1.19	5.59	0.36	-	1.33	4.39	3.65		
60-90	8.05	1.98	2.21	1.32	6.36	0.25	-	1.19	4.63	4.32		
Mechanica	I analysi	is %				Sp %	О.М %	nu	ailabl trient kg ⁻¹ s	S		
	C.sand	F.sand	Silt	Clay	Texture			Ν	Р	κ		
0-30	1.8	19.6	29.2	49.4	Clay	79.4	1.50	48.2	7.2	420		
30-60	1.4	15.7	31.4	51.4	Clay	80.8	1.04	43.1	6.1	375		
60-90	0.7	10.2	35.7	53.4	H. Clay	82.3	0.72	30.6	4.9	322		

Before sowing, FYM was added at the rate of $(20 \text{ m}^3 \text{ fed}^{-1})$ and irrigated with water at the saturation percentage. Then, left for two weeks to elucidate the damage on seeds and their roots resulted from the heat of decomposition.

Humic acid was applied to the soil on the mean of spray at rate of 50 L fed⁻¹ (each plot received 500 ml was diluted in 60 liters of irrigation water and given as spray to the soil at sowing). The chemical analysis of humic acid is shown in Table 2.

EC	C ₁ pH OM%		Macı	ronutrient	s (%)	Micronutrients (mg kg		
(d Sm⁻¹)	рп		Ν	Р	κ	Zn	Fe	Mn
0.90	7.8	65	5.60	0.18	4.90	248	409	244

The efficient strains of bacteria (Non-inoculation, Azotobacter+ Azospirillum and Nostoc + Anabaena) in peat growth media were obtained from General Organization for Agriculture Equalization Fund (GDAEF), Ministry of Agriculture and Land Reclamation, Egypt. Cultures of previous bio inoculants at 500 ml (1012 cells ml⁻¹) was diluted in 500 liters of water fed⁻¹ and given as spray to the soil at sowing.

Concerning mineral fertilizers, urea (46 % N), super phosphate (15.5 % P_2O_5) and potassium sulphate (48 % K_2O) were the respective of N, P and K sources. Nitrogen fertilizer was added to plots in three doses the first was 20% from recommended doses after sowing and before irrigation directly, the second was 40 % from recommended doses at the first irrigation, and the third was 40% from recommended doses at booting stage.

El-Hamdi, Kh. H. et al.

Potassium was applied at the rate of 150 Kg K fed⁻¹ as a one dose before the third irrigation. As for phosphorus fertilizer was added at sowing in single dose.

Three plants were taken after124 days (filling stage) from wheat seeds sowing, from each plot and carried immediately to the laboratory, Plant samples were separated; weight and oven dried at 70°c till constant weight was reached. The dried plant were thoroughly ground and stored for chemical analysis.

Soil analysis:

Particle size distribution was described by Piper (1950), pH value, EC, soluble carbonate and bicarbonate, soluble calcium, magnesium, soluble sodium, soluble chloride and potassium and sulfate was measured in the 1:2.5 soil water suspension as described by Jackson (1967). Water saturation capacity was determined by the method described by the U.S.Salinity Laboratory Staff (1954). Organic matter was determined according to Walkley and Black method, (Black (1965). Available N was described by Bremner and Mulvany (1982). Available phosphorus was determined following the method of Olsen, S. R. and L. E. Sommers (1982). Available potassium was determined according to Black (1965).

Plant Analysis:

The oven dry plant samples were ground and wet digested by sulphuric perchloric acid mixture as described by Peterburgski (1986). With respect to N, P, and K uptake values were calculated by multiplying the percentage of such elements by dry weight of the plants per plot in plot experiment and per 1 fed in field experiment and expressed as g plant⁻¹ at harvesting stage.

Statistical analysis:-

All data were statistically analyzed according to the technique of analysis of variance (ANOVA) and the least significant difference (L.S.D) method was used to compare the deference between the means of treatment values to the methods described by Gomez and Gomez, (1984). All statistical analyses were performed using analysis of variance technique by means of COSTATE Computer Software.

RESULTS AND DISCUSSION

Data presented in Table ^r show that; the highest mean values 56.59, 57.17 in 1st and 2nd for No. of grains spike⁻¹, 20.15, 20.35 in 1st and 2nd spike length (cm), and 84.89, 85.76 cm in 1st and 2nd for weight of 1000 seeds (g) obtained from 40 kg N fed⁻¹ jointly with Azt + Azs in presence of humic. Meanwhile, the lowest mean values were 38.50, 39.31 in 1st and 2nd for No. of grains spike⁻¹, 13.71, 13.99 in 1st and 2nd spike length (cm), and 57.75, 58.961in 1st and 2nd for weight of 1000 seeds (g) obtained from untreated wheat. This trend was significantly in the 1st season, while the 2nd season had no significantly effect.

Table 3: Interaction effect of humic acid, halotolerant N₂ fixers and nitrogen application on No. of grains spike⁻¹, spike length (cm) and weight of 1000 seeds (g) at the harvesting stage during both seasons of the experiment.

Char.			No. of	grains ke ⁻¹	Spike le	ngth (cm)		of 1000 ds (g)
Treat.			1 st	2 nd	1 st	2 nd	1 st	2 nd
	Non-	Cont.	38.50	39.31	13.71	13.99	57.75	58.96
		40 N fed ⁻¹	41.63	42.08	14.82	14.98	62.44	63.11
	inoculation	8 • N fed⁻¹	43.28	44.31	15.41	15.77	64.92	66.46
	Mean	-				14.91		
с С	Wean		41.14	41.90	14.64	16.57	61.71	62.85
Ξ		Cont.	42.08	42.52	14.98	15.14	63.11	63.78
Ъ	Azt+Azs	40 N fed ⁻¹	48.64	49.58	17.32	17.65	72.96	74.37
Ħ		8 · N fed⁻¹	47.39	48.28	16.87	17.19	71.09	72.43
P	Mean					16.66		70.19
Without humic	mean		46.04	46.80	16.39	18.51	69.05	
>	Nostoc +	Cont.	39.13	39.98	13.93	14.23	58.69	59.97
	Anabaena	40 N fed ⁻¹	45.96	46.63	16.36	16.60	68.94	69.95
	Anabaena	8 · N fed⁻¹	44.98	45.38	16.01	16.15	67.47	68.07
	Mean				1	15.66		
	mean		43.36	44.00	15.43	17.40	65.03	66.00
verag	je		43.49	44.21	15.48	15.74 17.48	65.24	66.31
	Non- inoculation	Cont.	45.43	46.01	16.17	16.38	68.14	69.01
		٤ • N fed⁻¹	47.03	48.02	16.74	17.09	70.55	72.03
		8 · N fed⁻¹	51.50	52.04	18.33	18.52	77.25	78.06
	Mean					17.33		
			47.99	48.69	17.08	19.26	71.98	73.03
ic.		Cont.	50.83	50.79	18.09	18.08	76.25	76.18
With humic	Azt+Azs	⁺ • N fed ⁻¹	56.59	57.17	20.15	20.35	84.89	85.76
Ē		8 · N fed⁻¹	54.54	55.97	19.41	19.92	81.81	83.95
iff	Mean					19.45		
3	mean		53.99	54.64	19.22	21.61	80.98	81.96
	Nostoc +	Cont.	48.28	48.69	17.19	17.33	72.43	73.03
	Anabaena	⁺ • N fed ⁻¹	54.94	55.70	19.56	19.83	82.41	83.55
	masacila	8 · N fed⁻¹	54.67	54.81	19.46	19.51	82.01	82.21
	Mean				1	18.89		
	mean		52.63	53.06	18.74	20.99	78.95	79.60
Averag	je		51.54	52.13	18.35	18.56 20.62	77.30	78.20
nter. S	lia		**	N.S	**	N.S	**	N.S
LSD at (0.67	N.S	0.26	N.S	1.01	N.S
	zotobacter	**	: Azospir		0.20	N.0	1.01	11.5

Azt :Azotobacter *Azs : Azospirillum

It was observed that plants grown well due to the application of microorganisms and humic substances which stimulate the plant yields. This may be due to the higher frequency of bio fertilization with the availability of soil moisture which leads to the effective absorption of nutrients and better proliferation of roots which might increase crop yield (Omer, *et al.*, 2004). There are also many reports of humic substances role in promoting plant biomass, stimulation of seed, straw and even direct effect on crop productivity and increases in crop yields.

El-Hamdi, Kh. H. et al.

A reference to Table $\frac{1}{2}$, findings point out that the highest mean values of grain yield were 14.78, 14.93 ardab fed⁻¹ in 1st and 2nd and 8.02, 8.11 ton fed⁻¹ in 1st and 2nd for straw yield obtained from 40 kg N fed⁻¹ jointly with Azt+Azs in presence of humic Meanwhile, the lowest mean values of grain yield were 10.06, 10.27 ardab fed⁻¹ in 1st and 2nd and 5.46, 5.57 ton fed⁻¹ in 1st and 2nd for straw yield obtained from untreated wheat. This trend was significantly in the 1st season, while the 2nd season had no significantly effect.

Table 4	: Interaction effect of				
	nitrogen application	on grains y	ield (ardab	fed ⁻¹) and	straw
	yield (ton fed ⁻¹) at the	third stage	during bot	h seasons	of the
	experiment.	_	_		

Char.	·	Grain yield		straw yield ton fed ⁻		
Treat.			1 st	2 nd	1 st	2 nd
		Cont.	10.06	10.27	5.46	5.57
	Non-inoculation	40 N fed ⁻¹	10.87	10.99	5.90	5.97
		8 • N fed⁻¹	11.31	11.57	6.14	6.28
с	Mean		10.75	10.94	5.83	5.94
ä		Cont.	10.99	11.11	5.97	6.03
hu	Azt+Azs	40 N fed ⁻¹	12.71	12.95	6.90	7.03
ť		8 ∙ N fed⁻¹	12.38	12.61	6.72	6.85
וסנ	Mean		12.02	12.22	6.53	6.64
Without humic	Nastas	Cont.	10.22	10.44	5.55	5.67
5	Nostoc +	40 N fed ⁻¹	12.01	12.18	6.52	6.61
	Anabaena	8 ∙ N fed ⁻¹	11.75	11.85	6.38	6.43
	Mean			11.49		
	wear		11.32	6.24	6.15	6.24
Average			11.36	11.55	6.17	6.27
		Cont.	11.87	12.02	6.44	6.52
	Non-inoculation		12.29	12.54	6.67	6.81
		8 · N fed⁻¹	13.45	13.59	7.30	7.38
	Mean		12.53	12.72	6.80	6.90
<u>.</u>		Cont.	13.28	13.27	7.21	7.20
Ę	Azt+Azs	40 N fed ⁻¹	14.78	14.93	8.02	8.11
With humic		8 ∙ N fed ⁻¹	14.25	14.62	7.73	7.94
lith	Mean		14.10	14.27	7.65	7.75
3	Nostoc +	Cont.	12.61	12.72	6.85	6.90
	Anabaena	40 N fed ⁻¹	14.35	14.55	7.79	7.90
	Allabaella	8 • N fed⁻¹	14.28	14.32	7.75	7.77
	Mean		13.75	13.86	7.46	7.52 7.39
Average			13.46	13.62	7.31	7.39
Inter. Sig			**	N.S	**	N.S
LSD at 0.0			0.17	N.S	0.10	N.S

The interaction effect between the previously mentioned parameters data in Table \circ also detected that, the highest mean values 513.45 for N-uptake (kg fed⁻¹) in 1st obtained from 80 Kg fed⁻¹ jointly with Azt+Azs in without

humic, 58.8 for K -uptake (kg fed⁻¹) in 2nd obtained from 80 Kg fed⁻¹ jointly with non-inoculation in presence humic, 462, 34.86 for N-uptake (kg fed⁻¹), P-uptake (kg fed⁻¹) in 2nd obtained from nitrogen cont. jointly with Azt+Azs in presence humic and 43.785, 82.95 for P-uptake (kg fed⁻¹), K-uptake (kg fed⁻¹) in 1st obtained from 40 Kg fed⁻¹ jointly with Azt+Azs in presence humic., Meanwhile, the lowest mean values of 360.15 for N-uptake (kg fed⁻¹) in 1st obtained from nitrogen cont. jointly with Nostoc + Anabaena in presence humic , 20.685, 38.85 for P, K in 1st obtained from untreated wheat and 117.6, 7.77, 13.65 for N-uptake (kg fed⁻¹), P -uptake (kg fed⁻¹) and K -uptake (kg fed⁻¹) obtained from nitrogen cont. jointly with non-inoculation in presence humic. This trend was significantly in the 2nd season only.

Table 5: Interaction effect of humic acid, halotolerant N2 fixers and
nitrogen application on N, P and K uptake at the harvesting
stage of grains during both seasons of the experiment.

Char. Treat. –		(kg f	N-uptake (kg fed⁻¹)		ptake fed⁻¹)	(kg i	take ed ⁻¹)	
			1 st	2 nd	1 st	2 nd	1 st	2 nd
	Non-	Cont.	404.25	216.3	20.685	11.34	38.85	22.05
	inoculation	⁺ ∙ N fed⁻¹	417.9	154.35	26.565	9.66	50.4	19.95
	moculation	8 · N fed⁻¹	487.2	245.7	32.76	15.96	67.2	34.65
ic.	Mean		436.45	205.45	26.67	12.32	52.15	25.55
۳		Cont.	391.65	180.6	24.045	10.71	44.1	19.95
Ē	Azt+Azs	⁺ ∙ N fed⁻¹	465.15	255.15	35.49	18.69	78.75	45.15
<u>T</u>		8 • N fed ⁻¹	513.45	254.1	39.165	19.11	77.7	42
Without humic	Mean		456.75	229.95	32.9	16.17	66.85	35.7
Š	Nastas	Cont.	385.35	240.45	22.05	13.545	38.85	26.25
	Nostoc	່ ະ ∙ N fed⁻¹	490.35	302.4	36.225	25.515	79.8	46.2
	Anabaena	8 · N fed ⁻¹	407.4	284.55	28.77	19.74	63	42
	Mean		427.7	275.8	29.015	19.6	60.55	38.15
Avera	ge		440.3	237.0667	29.52833	16.03	59.85	33.1333
	Non- inoculation	Cont.	474.6	117.6	32.235	7.77	52.5	13.65
		⁺ • N fed⁻¹	394.8	220.5	28.14	15.54	47.25	26.25
		8 • N fed ⁻¹	436.8	407.4	34.755	32.235	64.05	58.8
~	Mean		435.4	248.5	31.71	18.515	54.6	32.9
ц		Cont.	428.4	462	33.075	34.86	56.7	54.6
ž	Azt+Azs	⁺ ∙ N fed⁻¹	508.2	349.65	43.785	29.82	82.95	57.75
4		8 · N fed⁻¹	508.2	323.4	42.105	26.775	73.5	47.25
With humic	Mean		481.6	378.35	39.655	30.485	71.05	53.2
_	Nostoc	Cont.	360.15	330.75	26.565	24.255	45.15	37.8
	Anabaena	່ ະ ∙ N fed⁻¹	432.6	241.5	36.75	20.16	67.2	36.75
	Allandella	8 • N fed⁻¹	371.7	353.85	30.24	28.245	53.55	49.35
	Mean		388.15	308.7	31.185	24.22	55.3	41.3
Avera	ge		435.05	311.85	34.1833	24.41	60.31667	42.47
Inter.			N.S	**	N.S	**	N.S	**
LSD at	0.05		N.S	0.87	N.S	0.064	N.S	0.11

A glance of the interaction effect between the previously mentioned parameters data in Table 6 also detected that; the highest mean values

70.35, 76.65in 1st and 2nd for N-uptake (kg fed⁻¹), 7.665, 7.65 in 1st and 2nd for P-uptake (kg fed⁻¹)and 59.85, 65.1 in 1st and 2nd for K-uptake (kg fed⁻¹) obtained from 40 kg N fed⁻¹ jointly with Azt+Azs in presence of humic..

Char. Treat. –		(kg f	take ed ⁻¹)	(kg	ptake fed ⁻¹)	K-uptake (kg fed⁻¹)		
		1 st	2 nd	1 st	2 nd	1 st	2 nd	
	Non-	Cont.	26.25	29.4	1.99	1.89	21	23.1
	inoculation	^ڍ • N fed⁻¹	32.55	35.7	2.73	2.625	27.3	30.45
	moculation	8 ∙ N fed ⁻¹	36.75	40.95	3.045	2.94	32.55	35.7
ic.	Mean		31.85	35.35	2.59	2.485	26.95	29.7
Without humic		Cont.	32.55	34.65	2.52	2.415	26.25	28.35
Ē	Azt+Azs	٤٠ N fed⁻¹	48.3	53.55	4.515	4.41	40.95	46.2
ort		8 ∙ N fed ⁻¹	46.2	50.4	3.99	3.885	38.85	42
ţ	Mean		42.35	46.2	3.675	3.57	35.35	38.8
Š	Nestes	+Cont.	28.35	30.45	2.205	2.1	22.05	25.2
	Nostoc · Anabaena	⁺ ધ • N fed⁻¹	42	47.25	3.57	3.675	36.75	39.9
	Anapaena	8 ∙ N fed ⁻¹	39.9	43.05	3.255	3.15	32.55	37.8
	Mean		36.75	40.25	3.01	2.975	30.45	34.3
Averaç	je		36.98	40.6	3.092	3.01	30.91667	34.3
	Non- inoculation	Cont.	39.9	43.05	3.255	3.255	32.55	36.7
		⁺ • N fed⁻¹	43.05	48.3	3.885	3.675	34.65	38.8
		8 ∙ N fed ⁻¹	54.6	58.8	5.565	5.355	43.05	48.3
0	Mean		45.85	50.05	4.235	4.095	36.75	41.3
With humic		Cont.	50.4	54.6	5.145	4.935	40.95	46.2
Ę	Azt+Azs	^٤ • N fed ⁻¹	70.35	76.65	7.665	7.56	59.85	65.1
Ę.		8 ∙ N fed ⁻¹	63	70.35	6.93	6.825	52.5	59.8
Šİ	Mean		61.25	67.2	6.58	6.44	51.1	57.0
-	Nostoc -	Cont.	45.15	49.35	4.41	4.41	37.8	42
	Anabaena	+ ٤ · N fed⁻¹	66.15	71.4	7.245	7.14	55.65	60.9
		8 · N fed⁻¹	59.85	64.05	6.3	6.195	48.3	54.6
Mean		57.05	61.6	5.985	5.915	47.25	52.5	
Average		54.72	59.62	5.6	5.48	45.03333	50.23	
Inter. S			**	**	**	**	**	**
LSD _{at}	0.05		0.02	0.02	0.002	0.002	0.02	0.02

Table 6	: Interaction effect of humic acid, halotolerant N2 fixers and
	nitrogen application on N, P and K uptake at the harvesting
	stage of straw during both seasons of the experiment.

Meanwhile, the lowest mean values were 26.25, 29.4 cm in 1^{st} and 2^{nd} for N-uptake (kg fed⁻¹), 1.99, 1.89 in 1^{st} and 2^{nd} for P-uptake (kg fed⁻¹) and 21, 23.1 in 1^{st} and 2^{nd} for K-uptake (kg fed⁻¹)obtained from untreated wheat. This trend was significantly in the 1^{st} and 2^{nd} season

About the interaction effect between the previously mentioned parameters data in Table 7 also detected that; the highest mean values 578.55, 51.45, 142.8, 122.85 for N-uptake (kg fed⁻¹) in 1st, P-uptake (kg fed⁻¹) in 1st and K-uptake (kg fed⁻¹) in 1st and 2nd obtained from 40 kg N fed⁻¹ jointly with Azt+Azs in presence of humic, 516.6 for N-uptake (kg fed⁻¹) in 2nd,39.80 for P-uptake (kg fed⁻¹) in 2nd obtained from nitrogen cont. jointly with Azt+Azs in presence of humic, the lowest mean values were 405.3 for N-uptake (kg fed⁻¹) in 2nd obtained from nitrogen cont.

uptake (kg fed⁻¹) in 1st obtained from nitrogen cont. jointly with Nostoc + Anabaena in presence of humic, 160.65, 11.03 for N-uptake (kg fed⁻¹) in 2nd P-uptake (kg fed⁻¹) in 2nd obtained from obtained from nitrogen cont. jointly with non-inoculation in presence humic, 22.68, 59.85, 45.15 for P-uptake (kg fed⁻¹) in 1st and K-uptake (kg fed⁻¹) in 1st and 2nd obtained fromultreated wheat. This trend was significantly in the 2nd season only. It is well known that humic substances increases soil's cation exchange capacity (ability to hold and release cations such as K⁺, Ca⁺⁺, or NH₄⁺), and also can form aqueous complexes with micronutrients, though not to the same extent as many synthetic chelating agents (Mikkelsen, 2005). Since humic acid holds cations so they could be absorbed by a plant's root, improving micronutrient exchange and transference to the plant's circulation system (Adani *et al.*, 1998).

Table 7: Interaction effect of humic acid, halotolerant N2 fixers and nitrogen application on N, P and K uptake at the harvesting stage of whole plant during both seasons of the experiment.

Char. Treat.			N-up (kg f	ed ⁻¹)	(kg	ptake fed ⁻¹)	(kg	ptake fed ⁻¹)
ireat.			1 st	2 nd	1 st	2 nd	1 st	2 nd
	Non-	Cont.	430.5	245.7	22.68	13.23	59.85	45.15
	inoculation	⁺ ∙ N fed⁻¹	450.45	190.05	29.295	12.285	77.7	50.4
	moculation	8 ∙ N fed ⁻¹	523.95	286.65	35.805	18.9	99.75	70.35
	Mean		468.3	240.8	29.26	14.805	79.1	55.3
		Cont.	424.2	215.25	26.565	13.125	70.35	48.3
o	Azt+Azs	⁺ ∙ N fed⁻¹	513.45	308.7	40.005	23.1	119.7	91.35
ă		8 ∙ N fed ⁻¹	559.65	304.5	43.155	22.995	116.55	84
Without humic	Mean		499.1	276.15	36.575	19.74	102.2	74.55
rt	Nostoc ·	Cont.	413.7	270.9	24.255	15.645	60.9	51.45
ē	Anabaena	fed [™] N fed [™]	532.35	349.65	39.795	29.19	116.55	86.1
Vit	Anabaena	8 ∙ N fed ⁻¹	447.3	327.6	32.025	22.89	95.55	79.8
>	Mean		464.45	316.05	32.025	22.575	91	72.45
Averag	A						90.766	
Averaç			477.2833		32.62	19.04	67	67.433
	Non-	Cont.	514.5	160.65	35.49	11.03	85.05	50.4
	inoculation	٤ • N fed⁻¹	437.85	268.8	32.025	19.215	81.9	65.1
	moculation	8 · N fed⁻¹	491.4	466.2	40.32	37.59	107.1	107.1
	Mean		481.25	298.55	35.945	22.61	91.35	74.2
		Cont.	478.8	516.6	38.22	39.80	97.65	100.8
	Azt+Azs	د • N fed⁻¹	578.55	426.3	51.45	37.38	142.8	122.85
~		8 ∙ N fed⁻¹	571.2	393.75	49.035	33.6	126	107.1
nic	Mean		542.85	445.55	46.235	36.925	122.15	110.25
Ę	Nostoc	Cont.	405.3	380.1	30.975	28.665	82.95	79.8
4 L	Anabaena	・N fed ⁻¹	498.75	312.9	43.995	27.3	122.85	97.65
With humic		8 ∙ N fed ⁻¹	431.55	417.9	36.54	34.44	101.85	103.95
Mean Mean		445.2	370.3	37.17	30.135	102.55	93.8	
	Average		489.7667	371.46	39.78	29.89	105.35	92.75
Inter. S			**	**	**	**	**	**
LSD at	0.05		2.70	1.40	0.03	0.04	0.12	0.10

CONCLUSION

It could be recommended that inoculation of wheat plant with the mixture of multi strains inoculants (Azotobacter + Azospirillum) combined with humic acid (50 L fed⁻¹.) under N-fertilization at rate of 40 kg N fed⁻¹ are considered as the most suitable treatment for realizing the highest economic yield and the best quality parameters for wheat plants.

REFERENCES

- Adani, F; Genevini P, Zaccheo P, Zocchi G. (1998). The effect of commercial humic acid on tomato plant growth and mineral nutrition. Journal of Plant Nutrition, 21:561-575.
- Black, C. A. (1965). Methods of Soil Analysis.Part 2. Amer. Soci. of Agric. [NC] Publisher, Madison, Wisconsin.
- Bremner, J. M.; and C. S. Mulvany (1982). Nitrogen total P. 595. 616. in Page, A. L. et al., (ed.) "Methods of Soil Analysis". Part2: Chemical and Microbiological Properties. Amer. Soc. of Agron., Inc., Madison, Wis., USA.
- El-Zeky, M. M. (2005). Response of wheat to biofertilizer inoculation under different levels of inorganic nitrogen. J. Agric. Sci. Mansoura Univ., 30 (1): 701-710.
- Gomez, K. A. and A. A. Gomez (1984). "Statistical Procedures for Agricultural Research". John Wiley and Sons, Inc., New York.pp:680.
- Jackson, M. L. (1967). "Soil Chemical Analysis; Advanced Course" Puble. By the auther, Dept. of Soils, Univ. of Wise., Madison 6, Wishensin, U.S.A.
- Kubo. M.; J. Hiroe, M. Murakami, H. Fukami and Tachiki (2001). Treatment of hypersaline-containing wastewater with salt-tolerant microorganisms. Journal of Biosciences and Bioengineering 91, 222-224.
- Mikkelsen, R. L. (2005). Humic Materials for Agriculture. Better Crops/Vol. 89.
- Olsen, S. R. and L. E. Sommers (1982). Phosphorus.P. 403-130. in Page, A. L. et al. (eds) Methods of Soil Analysis. Part2: Chemical and Microbiological Properties. Am. Soc. of Agron., Inc. Madison, Wis, USA.
- Omer, Z. S.; R. Tombolini, A. Broberg and B. Gerhardson (2004). Indole-3acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regul., 43: 93- 96.
- Peterburgski, A. V. (1968). "Hand Book of Agronomic Chemistry".Kolas publishing House, Moscow, (in Russian), pp. 29-86.
- Piper, C. S. (1950)."Soil and Plant Analysis". Inter Science Publishers Inc. New York.
- Pregle, E. (1945). "Quantitative Organic Micro-Analysis" 4th Ed. J. Chudrial, London.
- Semenov, M. A.; P. D. Jamieson and P. Martre (2007). Deconvoluting nitrogen use efficiency in wheat: A simulation study. Eur. J. Agron. 26:283-294.

- Sivaprakasam, S.; S. Mahadevan, S. Sekar and S. Rajakumar (2008). Biological treatment of tannery wastewater by using salt-tolerant bacterial strains. Microbial Cell Factories 7, 15.
- U. S. Salinity Laboratory Staff (1954). Diagnosis and Improvement of Saline and Alkali Soils. USDA Agric. Hand Book No. 60, Washington, D.C.

التأثير المتداخل للتسميد الحيوى والنيتروجينى فى وجود حمض الهيوميك على محصول القمح ،مكوناتة و امتصاص العناصر الغذائية خالد حسن الحامدي'، المتولى مصطفى سليم' وهدي إبراهيم حسين ا قسم الأراضي- كلية الزراعة- جامعة المنصورة ^٢ قسم الأراضي واستغلال المياه- المركز القومي للبحوث - القاهرة - الدقي

نفذت تجربتان حقليتان فى منطقه المطريه بالقرب من بحيرة المنزلة بمحافظة الدقهلية خلال الموسمين الشتويين ٢٠٠٩-٢٠١٠ و ٢٠١٠-٢٠١١ لدر اسة التأثير المتداخل لمثبتات التأزت المقاومة للملوحة واضافة حامض الهيوميك على تيسير النيتروجين وامتصاص العناصر الغذائيه لمحصول القمح وذلك لتقليل استخدام الأسمدة المعدنيةالتي تودى إلى نقص معنوى في إنتاج محصول القمح.

اشتملت التجربة على ثمانية عشر معاملة في تصميم قطاعات تحت منشقة وهي تمثل كل التفاعلات الممكنة بين معاملتان من حامض الهيوميك (إضافه هيوميك (٥٠ لتر فدان () و عدم اضافته) كمعاملات رئيسيه ,وثلاث معاملات من التسميد الحيوي (كنترول، أزوتوباكتر مع أزوسبيريلوم و نوستوك مع انابينا) كمعاملات منشقه و ثلاث معاملات من

جميع المعاملات كررت ثلاث مرات ليصبح العدد النهائي للمعاملات ٥٤ معاملة.

أظهرت نتائج البحث أنه بإضافه حامض الهيوميك وجد أن قيم متوسطات كل من عدد الحبوب السنبلة [، طول السنبلة (سم)، وزن ١٠٠٠ حبة، محصول الحبوب (أردب فدان^{- (})، محصول القش (طن فدان^{- (})، النيتروجين ، الفوسفور والبوتاسيوم الممتص في المحبوب ، القش ، النبات ككل (كجم فدان^{- (}) بمرحلة الحصاد حدث بها زيادة معنوية نتيجة لاضافه الهيوميك بمعدل ٥٠ لتر فدان !

فى هذه الدراسة وجد أن إضافه الأزوتوباكتر مع الأزوسبيريلوم كمعدل للتسميد الحيوى كان الأكثر فعالية في زيادة كل من قيم متوسطات كمل من عدد الحبوب السنبلة (، طول السنبلة (سم)، وزن ١٠٠٠ حبه، محصول الحبوب (أردب فدان-١)، محصول القش (طن فدان ')، النيتر وجين ، الفوسفور والبوتاسيوم الممتص في الحبوب ، القش ، النبات كُكل (كجم فذان) بمرحله الحصاد أعلى من أي إضافه للتسميد بمثبتات التأزت المقاومة للملوحة الأخرى وهذا التأثير كان معنوياً خلال موسمي النمو.

اما بالنسبة لتأثير التسميد النيتر وجينى فوجد أن متوسطات كل من عدد الحبوب السنبلة (، طول السنبلة (سم)، وزن ١٠٠٠ حبة، محصول الحبوب (أردب فدان)، محصول القش (طن فدان-)، النيتروجين ، الفوسفور والبوتاسيوم الممتص في الحبوب ،

El-Hamdi, Kh. H. et al.

القش ، النبات ككل (كجم فدان^{- (}) بمرحلة الحصاد لنبات القمح المعامل بـ ٨٠ كجم نيتر وجين فدان^{- (} أدى إلى حدوِث زيادة معنوية مقارنة بالنياتات الغير المعاملة.

وَجُد أَيضاً أن التأثير المتداخل بين المعاملات تحت الدراسة أدت لحدوث زيادة فى قيم متوسطات كل من عدد الحبوب السنبلة '، طول السنبلة (سم)، وزن ١٠٠٠ حبة، محصول الحبوب (أردب فدان ')، محصول القش (طن فدان ')، النيتروجين ، الفوسفور والبوتاسيوم الممتص فى الحبوب ، القش ، النبات ككل بمرحلة الحصاد عند إضافه ٤٠ كجم نيتروجين فدان ' تحت التسميد بالأزوتوباكتر والازوسبيريلوم فى وجود حامض الهيوميك.

قام بتحكيم البحث

اً.د / احمد عبد القادر طه اً.د / عادل رزق احمد

كلية الزراعة – جامعة المنصورة مركز البحوث الزراعيه