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ABSTRACT- Ambulatory electrocardiogram (ECG) recordlngs from
patients undergoing severe physical stress are corrupted by
large muscle artlfacts (EMG) and other noise sources, such as
basellne drifts and currents induced by motion artifacts and
electromechanical devices. A simple real-time algorlithm has
been developed whlch is suitable for on~line detectlion of the
QR38 complexes. The algorithm calculates several statlstlcal
paraneters of the ECG signal whlch are used to adapt the
threshold to basellne changes 1in the slignal, thereby
lncreaslng detectlon sensitlivity.

1. INTRODUCTION

In recent years the trend toward automated analysis of
electrocardlograms (ECG) has galned momentum. Many systems
have been lmplemented 1In order to perform such tasks as
12-lead off-line electrocardlogram analysls, Holtex tape
analysis, and real time monltoring. An lmportant issue in the
analysls of ECG's ls the monitoring of occurrence times of
near-perlodic events of particular phenomena. The major arxea
of monitaring lles in the study of heart rate wvariability,
1.e., the spontaneous fluctuations ln the heart rate, by means
of the reliable ldentlfication and locatlon of the most
prominent feature of the ECG, the QRS complex.

Under normal condltions, In the absence of muscle
artlfacts and other electrical perturbatlons, a large
signal-to-noise ratio (SNR) prevalls. The techniques involved
in the detectlon of the QRS complex have long been establlshed
with wvarying degrees of SUCCess. However, in 50me
appllcatlons, such as ergonomlcs, a patlent may undgrqo severe
physical stress. The ECG signal will be corrupted with a la;ge
nonstatlonary stochastic muscle artifact slgnal together with
extraneous transient and contlnuous nolse components due Fo
motlon artifacts and electromechanical devices. The BSNR, 1in
this case, will be very much reduced and may often be inferior
to unity. Under such clrcumtances most QRS complex detection
techniques fail [1].
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The existing algeorithms for QRS detection can be
classifled lnto four ecategories: algorlthms based on both
fixed ampllitude threshold and tirst derlvatlive [2-4]),
algorithms that use first derlvative only (53], algorithms
utilizing both first and second derlvative [€], and algorithms
employing digital filters [(7-12]. However, many of these
algorithms require a relatively noise-free digitized ECG. Data
corrupted with noise must either be filtered or discarded. ECG
gquality assurance not only requires human or software noise
detectlion schemes, but also may result in the 1loss of
clinically significant data. This is an {mportant design
conslderation for applications in real-time heart monitoring.

Algorithms based on amplitude and slope have a
significant advantage as they are most immune to
electromyographic interference. However, these algorithms are
gensitlve to changes in baseline which acecounts feor the
decrease 1in performance. If changes in baseline can be
corrected by high pass filtering and/or a cubic spline, these
algorithms would offer the highest performance (13). However,
these operatleons can alter the signal and may require
substantial computations.

In this paper, we propose a simple real-time QRS
detection algorithm which can be used under both reduced- and
large- nonstationarity conditions. The algorithm 1ls based on
the determination of an adaptlive variable threshold and the
first derivative. It calculates several statistical parameters
of the ECG signal, which are used on-line to adapt the
algorithm to the nature of the signal.

The performance of the proposed algorithm 1s compared
wlth three other algorithms using a database conslsted of a
synthesized normal ECG {(used as a gold standard) corrupted
with flve types of synthesized noise.

2. THE QRS DETECTION ALGORITHM

It is already known that a detection algerithm based on a
fixed threshold and filrst derivative faces two problems,
These are as follows:

1) If one selects a small value for the threshold then in
additlon to the true QRS complexes, all types of single-peaked
waves having high magnitude w11l be detected e.g. T-wvave,
P-wave, and other artifacts.

2} If one selects a large value for the threshold, then the
algorithm will not indentify all types of QRS complexes and
QRS waves with small ampllitudes will be missed,

We are proposing a real-time algorlthm, which on-line
calculates some statlitlcal parameters of the signal to be
analysed, and adapts itself to the nature of the signal by
recalculating the threshold value at each sample. The proposed
algorlthm optimizes the tradeoff between high performance 1In
case of high freguency noise and the lnsensitivity to changes
in baseline. The threshold is neot constant, and depends on the
nature of the signal.

The proposed detection algorithm consists of the
following steps:

Step 1: The algorithm takes a moving window of length N
samples from the raw electrogram data. Denote this sequence by
xiln =1, 2, ..., N). The algorithm calculates the following
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The described detectlion algorithm ls presented in Fig.l.
In the inner loop, the algorithm recursively calculates the
statlstical parameters, calculates the tlme derlvatlvF, and
updates the threshold value wvhile xk< Tk and no change in the

sign of Y,- When the conditions are not met, the algorithm
saves the pair (Xk, k) and enters the next detectlon cycle.

DETECTION ALGORIT:M

!
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statlstlcal parameters for each N sample points centered at
the kth sample:

1} Mean value f;, deflned as
k+m
X = -i- X (1)
k N Y /S
N=2m + 1

2) Standard deviation o defined as

k+m
1 . =
AR S o
N
i=k-m

3} Thizrd moment Hk, defined as

k+m
Hk=[—t—%,-Z{xt—fk}’} (3)

The standard deviation ¢ of the signal indicates the
deviation of the sample from the mean wvalue. It is a good
measure to distinguish the low-variabllity signal regions from
the high-varisbility slgnal reglons. In some cases, however,
the standard deviatlon is not good enough as a measure to
detect short wvariatlons [14). Therefore, the algorithm
calculates the third moment and uses 1t as an additlonal
criterlion For calculating the threshold,

Step 2: A threshold value Tl is ecalculated Ffor each sample
uslng the Fformula:

Tk=c1xk+czak+csHk {(4)

where Ci, Cz’ and Ca are constants to be determined
emplrically.

Step 3: The dlfference Y. between two successive samples XL
"
and ){H_’l 15 formed, such that

= - 5
y\. xi.+1. xi. ()

If x> X 44 Y, 15 negative, |Indicating that a downslope
19 9

o X e b P T 2 = -
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the ECG for a total of 32 s. Followlng the procedure reported
by Friesen et al. {13], the dlgltized ECG vas subseqguently
edited untll 1t appeared consistent with the analog recording
and stored in a Fortran data file as a llnear array of 8192
single precision floating-point numbers. The heart rate §{s a
constant 69 beats per minute, the QRS width is 88 ms and the
R-vave amplitude is 1.08 mV, A plot of a segment of the
uncorrupted ECG Is shown in Fig.?2.

B~ The slmulated signal
We have chosen five types of noise and we have developed

thelr models for slmulation wusing the methods reported by
Freisen et al. [13). These are:

1) electromygraphic Interference (EMG),

2) poverline interference,

3) baseline drift due to respiration,

4) abrupt shifts in the baseline, and

5) motion artifacts

6} a composite of all of the above.

We did not simulate other types of noise such as
electresurgical and instrumentation noise as they behave
similarly to the random model used for EMG.

Each of the six types of noise is added to an uncorrupted
ECG at four dlfferent levels: 25, 50, 75, and 100 percent of
the maximun amplitude.

1} Electromyographic Interference: This type of neoise 1is
simulated by adding random noise to the ECG. The maximum noise
level iz formed by adding random numbers derived from a
zero-mean Gausslan distribution of +50 percent of the ECG
maximup amplitude to the uncorrupted signal. The reduced noise
levels are formed by scaling the random numbers by appropriate
amount. A plot of the ECG corrupted by electromyographic noise
is given in Fig.3.

2) powerllne Interference: Fifty Hertz noise 1is generated
using sine function generator. The maximum noise level
corxresponds to a peak-to-peak amplitude of 0.333 mV. A plot of
the ECG corrupted with poverline noise 1is shewn 1ln Fig.4.
Harmonic poverline frequencles were not modelled since the 50
Hz component is dominant.

3] Baseline Drift Due to Respiration; This type of
interference Is simulated by adding a low freguency sinusoid
to the uncorrupted ECG. The freguency is 0.333 Hz and the
maximum amplltude is 1.0 mV peak. It is generated in the same
manner as the poverline Interference using different amplitude
and frequency. hmplitude effects due to resplration were not
modeled. A plot of the ECG corrupted by basellne drift due to
respiration is illustrated in Fiq.5.

4) Abrupt Shift in Baseline: This type o©E interference
represents an abrupt shift in baseline due to movement of the
patient vhile the ECG is being recorded. It is simulated by
adding a dc bias for a given segment of the ECG. The maximum
noise level conslsts of six alternating basellne shifts of
+0.5 or -0.5 mV. This resulted in five baseline shifts of +1.0
or ~1.0 mV and one of +0.5 mV. Fig.6 shows a plot of the ECG
corrupted by abrupt shifts in baseline.

In reality, shifts in ECG baselines are less abrupt than
our model; hence we are performing a warst case simulation for
the amplitude-slope QRS algorithms.

£--mom ics started with some initial

e dAoatrtombEi~srrn RFACERAdTIT E



Mansoura Engineering Journal (MEJ),Vol.17,No.4, Dec. 1992 E-7

S} Motion Artifacts: Motion artifacts are transient Dbaselline
changes caused by changes in the electrode-skin impedance with
electrode motion. The usual cause of motlon artifacts wlll be
assumed to be vibrations or movements of the subJect. It is
simulated by adding a 1low frequency sSine wave to the
uncorrupted signal. The maximum amplltude is 4.32 mV peak and
the frequency is 0.1 Hz. Fig.?7 illustrates the ECG corrupted
by motion artifacts.

6) Composite Neolse: A composite nolse is formed by combining
all of the noise types -described above. The maximum noise
level is constructed by reducing the maximum noise level of
each type of noise to 50 percent of the maximum and then
summing them. The reduced noise levels of the composite are
formed by scaling the constructed composite noise and then
adding it to the uncorrupted ECG. Fig.8 shows a plot of the
resultant ECG.

4. THE EVALUATION CRITERIA

Hamilton and Tompkins proposed criteria for evaluation of
QRS detectors {15}, When a QRS complex occurs, a detection
algorithm either indicates or fails to Aindicate the event.
Proper detection of a valid QRS complex represents a true-
positlve (TP) event. Missing a valid QRS complex represents a
false-negative {(FN) event. Similarly a false-positlve (FP)
event 1s an indlcation of a detection in the absence of any
QRS complex. Multiple detection (MD} occurs when the QRS
detector triggers more than once within the same QRS window,

Our scoring algorithm compares the onset of the QRS
candidate to a key file containing the locations of all of the
valid QRS onsets. If the candidate onset falls between the
actual onset and the end of the QRS complex (a window of 22
sample points or 88 mns was chosen), it is scored as a QRS
detection. 1f the rcandidate onset occurs outside these
boundaries, it iIs counted as a false positive. The percentage
of QRS complexes correctly detected is calculated at the end
of each run by dividing the number of QRS complexes Correctly
detected by the total number of actual QRS complexes.

Since the search for the next QRS complex resumes at the
next point following the candidate onset, it is possible that
the same QRS complex will be detected more than once. Only the
first correct detection will be included 1ln the scoring of
QRS-complexes found or the measure of delay. Subsequent
detections which fall within the boundaries of the first
detected QRS were classifled as multiple detection (MD).

An indication of the time delay (TD} required for
detection ls also calculated after each run. If the detection
occurs after the actual onset but before the end of the QRS
complex, it is classified as a late detection. The number of
sample points between the onset and the detectleon are sumnmed
for all of the detections of that run.

5. RESULTS

The results of the appllcation of the described detection
method with variable threshold are listed ln Tables [-IV. Each
table gives the results of one level for the six types of
noise. The values of the constants Cl, Cz, and C3 in Eg.(4)

were determined by varying each constant independently until
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the algorithm gave the best results when the ECG was corrupted

by a 100 percent composite nolse. These were found to be C‘ =
0.9, Cz = 0.71, and Cs= 0.71. Fig.9 shows the corrupted ECG

signal with composite noise (solid line) and the determined
threshold T calculated using Eq. {4) {(dashed line). Note that

the threshold always follows the baseline movement.

Table I Detection results using the uncorrupted ECG

TP FP FN MD TD % CRS
{Detected)
37 0 0 0 0 100

Table II Detection results using the 50% noise level

Nolse Type TP FP FN MD TD % QRS
{detected)
EMG 37 0 0 0 5 100
Powerllne 37 0 0 0 0 100
Respiration 37 0 0 0 0 100
Baseline drift 37 0 0 0 0 100
Motlon 37 0 0 0 0 100
Composlte 37 0 0 0 1 100

Table III Detection results using the 75% nolse level

Noise Type TP P FN MD TD % QRS
{detected)

EMG 37 Q 0 0 7 100
Powerllne 37 0 Q Q 13 100
Respiration 37 0 0 0 0 100
Basellne drift 37 0 0 0 0 100
Motion 37 0 0 0 0] 100
Composite 37 0 0 0 4 100
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Table IV Detection results using the 100% noise level

Noise Type TP FP FN MD TD % QRS
{detected)

EMG 7 0 0 0 12 100
Powerline 37 0 0 0 132 100
Respiration 37 0 0 0 0 100
Baseline drift 37 0 0 0 0 100
Motlon 37 0 0 0 0 100
Conposite 37 0 0 0 8 100

Wwe compared the proposed method with three other
algorithms using slope and f£ixed threshold criteria (21-(4}.
The percentage of correct detection obtalned for the £flxed
threshold netheds ranges from 81.1 to 91.9 percent for the 100
percent nolse corrupted ECG. The proposed variable threshold
algorithm gives as high as 100% correct detection which 1is a
good compromise.

Table V evaluates the number of TP, FP, FN and the tine
delay (TD) in QRS detection for the three £fixed threshold
algorithms and the proposed methoed in case of composite noise.
The table indicates that our algorithm optimizes the tradeoff
between the high performance 1in case of 1large basellne
novements and the accurate detectlon In the presence of high
freguency nolse.

Table V Comparison of Four Algorithms
(Composite Noise 100% level)

Algorithm TP FP FN TD % QRS
{Detected)
Moriet-Mahoudeaux (2] 31 o [ 25 83.18
Fraden-Neuman [3] 13 22 6 37 8l.1
Gustafon [4) 34 3 1 91.5
Proposed Algorithm 37 0 0 B 100

6. CONCLUSION

We presented an adaptlve real-time algorithm for on-line
detectlon of the QRS complexes. The algorithm rellably detects
QRS complexes using some statlistical parameters te adjust
automatically the threshold so that it adapts to variations in
the baseline of the ECG signal, thereby increasing the
detection sensitivity. Its effectiveness can be attributed to
its insensitivity to baseline changes as well as its accurate
performance in case o¢f high frequency noise. The most
slgnlflcant result 1s that no sharp Jump of baseline has been
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mlsclassified as QRS-complex. So, this algorithm is very
robust to baseline wanderlng.
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