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ABSTRACT 

The goal of dynamic economic dispatch (DED) is to minimize the total operating cost of all 

committed generating units considering all physical and operational constraints. The DED problem 

is very complicated nonlinear optimization problem due to transmission losses, ramp-rate limits 

and valve-point effects constraints. Both bacterial foraging algorithm (BFA) and particle swarm 

optimization (PSO) methods have poor convergence characteristics. So, weighted PSO (WPSO) is 

employed to avoid the drawbacks of original PSO by employing the adaptive inertia weight 

factor. In this paper, modified BFA (MBFA) oriented with WPSO method is proposed by 

integrating MBFA and WPSO. By combining these two algorithms, the advantages of both of 

them can be extracted. This leads to get better solution of DED problem. Also, the diversity 

strategy is used in the proposed algorithm to solve the problem of early convergence. To prove the 

efficiency of the proposed method in solving the DED problem, different systems are employed. 

The obtained results prove the efficiency of the proposed method when comparing with other state 

of the art methods.  

تكلعدة اقدل الهدف الاساسى لحل مشكلة التوزيع الاقتصادى للقددة  العاالدة تاا القيدود الديياميكيدة لدو الحصدول  لدى 
 تاا القيدود الديياميكيدة ان مشكلة التوزيع الاقتصادى للقدة  العاالدة مع الاخت فى الا تباة كل القيود المختلعة.تشغيل 

ب الاديد من القيود مثل قيود ماددل الميحددة و القددة  المعقدود  وكدتلك من المشكلاا الغية خطية والماقد  وتلك بسب
و طةيقة أفةاد السدةب يقاط الصمام. لتلك فإن اقتةاح طةق فاالة لحل لته المشكلة من الاموة تاا الالتمام الكبية. 

تدم  التقليديدةلسدةب طةيقدة أفدةاد امشداكل لحدل مشدكلة التقداةب البطد  .  يااييدان مدنالخواةزمية البكتيةية الأصدلية 
الموجهدة و المادلدة فدى لدتا البحدم تدم اقتدةاح طةيقدة الخواةزميدة البكتيةيدة .الموزويهاستخدام طةيقة أفةاد السةب 

. باسدتخدام كدلا مدن لاتدان الطةيقتدان فايده يمكدن الحصدول  لدى المميدزاا الموزويدهطةيقدة أفدةاد السدةب باستخدام 
مشدكلة التوزيدع الاقتصدادى للقددة  العاالدة تاا  لدى حلدول مثلدى افلدل ل الموجود  فى كلا مديهم وبالتدالى الحصدول

تدم تطبيدق فدى الطةيقدة المقتةحدة لحدل مشدكلة التقداةب المبكدة. . كما تم استخدام استةاتيجية التيدو  القيود الديياميكية
ليتداج  مدع يتداج  باد  الطةيقة المقتةحة  لى  د  ايظمة لبيان مدى فا لية الطةيقة المقتةحة. وكتلك تمدا مقاةيدة ا

الطةق الميشوة  وقد أثبتا اليتاج  مدى فا لية الطةيقدة المسدتخدمة ومددى تعوقهدا  لدى بقيدة الطدةق المسدتخدمة فد  
 المقاةية.  

Keywords: Modified bacterial foraging algorithm, weighted particle swarm optimization, diversity 

strategy, dynamic economic dispatch, ramp-rate constraint. 

 

NOMENCLATURE 

F Total generation cost over the entire operating 

horizon. 

Fi,t Fuel cost of generator i at time t. 

PGi,t Output power of generator i at time t. 

i Unit index. 

t Time index , t=1,…,T (hour) 

 j Unit index (j=1,…,n). 

n Number of generation units. 

T Number of hours in the operating horizon. 

ai, bi, ci Fuel cost’s coefficients for generator i. 

αi, δi Valve-point’s coefficients for generator i. 

PGi,min Minimum output power of generator i (MW). 

PD,t The load demand at time t.  

PLoss,t Total real power loss at time t. 

Bij,t Loss coefficient relating the productions of 

units i and j at time t (MW-1). 

Bi0,t Loss coefficient associated with the production 

of unit i at time t.  

B00,t Loss coefficient parameter at time t (MW). 

URi Limit of ramp-up of generator i (MW/h). 

DRi Limit of ramp-down of generator i (MW/h). 

PGi,max Maximum power output of generator i (MW). 

k

ip  Position of particle i at iteration k. 

k

iu  Velocity of particle i at iteration k. 
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k

ibestp ,  
The best previous position of particle i at 

iteration k. 

k

ibestg ,  
The best position among all particles in the 

population. 

w Inertia weight parameter. 

r1, r2 Random numbers ϵ [0,1]. 

c1, c2 PSO’s acceleration coefficients. 

w  Adaptive inertia weight factor. 

wmin, wmax Minimum and maximum value of w. 

O Particle’s current objective value. 

Oavg Average objective value of all particles in the 

population. 

Omin Minimum objective value of all particles in the 

population. 

d Search space’s dimension. 

Nb Number of bacteria. 

Nl Length of a swim. 

Ncs Number of chemotactic steps.  

Nrs Number of reproduction steps. 

Nes Number of elimination dispersal events. 

Pes Elimination dispersal’s probability. 

C(i) Size of the step taken by each bacterium i in the 

random direction. 

φ(j) Random direction of movement after a tumble 

θi(j,k,l) Position vector of the bacterium i in jth 

chemotactic, kth reproduction and lth elimination 

dispersal step. 

F(i,j,k,l) Objective value of bacterium i in jth 

chemotactic, kth reproduction and lth elimination 

dispersal step. 

  Constriction coefficient. 

bLbest Best position of each bacterium. 

bGbest Global best bacteria. 

I(j,k,l) Position of each bacterium of the population. 

dattract, 

wattract, 

hrepellant, 

wrepellant 

Coefficients which characterize the features of 

the attractant and repellant signals. 

i

m  The mth element of ith bacterium location θi 

 

1. INTRODUCTION  

The economic dispatch (ED) represents one of the 

fundamental operation functions of the electrical 

power systems, particularly with the growth in cost 

of available fuel types [1]. The main goal of ED is to 

schedule the output power of all generation units. In 

addition, it aims to meet the load demand at a 

specific time with least operating cost taking into 

account all constraints. This makes the ED problem 

as a significant non-linear optimization problem [1]. 

There are two different types of ED. The first one 

called static economic dispatch (SED), while the 

second one is called dynamic economic dispatch 

(DED). In general, SED optimizes the total 

generation cost in a definite time without considering 

the connection of different operating times. On the 

other hand, the DED considers these connections by 

taking into consideration the ramp-rate limits [2].  

In DED, all physical and operational constraints such 

as ramp-rate limits are taken into account which 

makes it a very complicated optimization problem 

[3]. Therefore getting the global optimum for this 

non-convex problem is a great challenge. 

In literature, different algorithms are employed to get 

the accurate solution of the DED problem. The 

conventional optimization approaches such as 

Lagrangian relaxation (LR) [4] and dynamic 

programming (DP) [5] have some drawbacks. They 

suffer from curse of the dimensionality problem 

particularly in solving the problems with large scale 

systems. In addition, they fail to achieve the accurate 

solutions due to the nonlinear characteristics of the 

DED problem. 

On the other hand and however, the artificial 

intelligence (AI) based methods such as differential 

evolution (DE) [6] and particle swarm optimization 

(PSO) [7] give better performance than conventional 

methods, they may be trapped in local optima. For 

this reason, researchers used hybrid methods to solve 

the DED problem [2, 8]. The hybrid methods have 

many merits. They decrease the search space. 

Moreover, they give an acceptable computation time 

in solving the DED problem. Lastly, they can deal 

with more constraints [2]. 

In recent years, swarming methods such as bacterial 

foraging algorithm (BFA) and PSO have been 

employed to get an accurate solution of the economic 

dispatch problem [7, 9]. To overcome the 

disadvantages of the conventional PSO method, 

weighted PSO (WPSO) is proposed and employed by 

merging the PSO and adaptive inertia weight factor 

which described in [10-12]. In the BFA, there are 

three essential steps. They are chemotaxis, 

reproduction and elimination-dispersal steps [13]. 

Like other AI methods, the conventional BFA may 

be trapped in local optima and gives poor 

convergence characteristics especially for non-

convex DED problem. So, these disadvantages 

should be overcome before using the original BFA to 

solve the DED problem [9]. 

In this paper, a hybrid WPSO and modified BFA 

(MBFA) is proposed to solve the problem of DED by 

merging the WPSO and MBFA. The WPSO method 

is resulting by using adaptive inertia weight factor 

with conventional PSO to regulate the global search, 

whereas, the MBFA can be derived by merging 

adaptive stopping criterion with original BFA. So, 

the proposed method has the merits of both WPSO 
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and MBFA. In the same time it excludes the 

drawbacks of both methods.  In addition, diversity 

strategy is employed in this paper to avoid the early 

convergence problem.  

To prove the efficiency of the proposed method over 

other state of the art methods in solving the DED 

problem, different standard systems are serving as 

test systems. The contributions of this research work 

are: to propose a hybrid optimization method by 

merging MBFA with WPSO and using diversity 

strategy, to employ the proposed method to get the 

optimal solution of the DED problem and to achieve 

lower operating cost in comparison with other 

methods. 

The paper is organized as follows: Section 2 shows 

the problem formulation of the DED problem. 

Section 3 describes the implementation of the 

proposed method. The simulation results and 

comparisons are shown in Section 4. Lastly, Section 

5 concludes the work. 

2. MATHEMATICAL DESCRIBTION OF 

DYNAMIC ECONOMIC DISPATCH  

2.1 DED Problem’s Objective Function 

To achieve the objective of DED, the following 

quadratic objective function can be used [2]: 

 

minimize 

 

              (1) 

When the valve-point effect is taken into account, the 

total fuel cost of each generation unit can be 

rewritten by adding the sinusoidal function as follows 

[3]:  

 

 
 

              (2) 

2.2 Constraints 

To solve the above objective function of DED 

problem, the following equal and unequal constraints 

are considered [2, 3]. 

1) System power balance:  

 

         (3) 

 

The B-coefficients formula is employed to get the 

transmission network losses as follows: 

  

                                                             (4) 

 

2) Generation limits:  

                                                                                 (5)                                                                                    
 

3) Up/down ramp rate limits:  

                                                                                 (6) 

  

                                                                                 (7) 

 

Taking into account the ramp rat limits, the 

generation limits can be rewritten as follows:  
 

         (8) 

 

                                                                                 (9) 

 

3. PROPOSED METHOD 

3.1 Particle Swarm Optimization  

The original PSO begins with initial population of 

random solution. Each of them called particle which 

moves around in the search space to find the best 

solution. In PSO, the swarm direction of each particle 

depends on its own experience and the experience of 

closest particles [10]. 

In d-dimensional search space, the updated velocity 

and position of each particle of PSO can be 

determined as follows [14]:  

           

 

       (10)   

 

                     (11) 
 

More details about conventional PSO can be found in 

[10, 14].  

3.2 Bacterial Foraging Algorithm   

The original BF algorithm has been extensively used 

as a global optimization method to solve many 

optimization problems. The foraging performance of 

the bacterium can be demonstrated as an optimization 

process where each bacterium can search for its food 

and avoiding noxious substances. In addition, there is 

a communication among bacteria [13].  

As other optimization methods, the BF algorithm 

begins with randomly generated initial population 

where the number of bacteria is equal to the number 

of individuals in the initial population. These bacteria 

attempt iteratively to achieve a global optimum via 

four stages. They are chemotaxis, swarming, 

reproduction and elimination dispersal stages [9]. 
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Firstly, each bacterium is swimming and tumbling 

via flagella. By altering between these two kinds of 

motion, the bacterium spends its lifetime. Then, the 

bacteria assemble into sets. They move as concentric 

forms with high bacterial density. After that, only 

fitter bacteria remain and split into two bacteria. 

Finally, some bacteria may be disappeared with a 

very small probability. More details about 

conventional BFA can be found in [9, 13, 15].  

3.3 Modified BFA Oriented with Weighted PSO  

In the original PSO, choosing the parameters affects 

its performance. One of these parameters is the 

inertia weight (w). This parameter controls the effect 

of the preceding velocity of the particle on its present 

one. The incorrect choice of the value of this 

parameter will affect the convergence speed of the 

algorithm. So, Liu, et al [11] combined the adaptive 

inertia weight factor with the PSO to regulate the 

global search.  

By using the adaptive inertia weight factor, the 

parameter w of the PSO will vary adaptively 

according to the particles’ objective values as follows 

[11]:  

 

 
          

      (12) 
 

In original BFA, the multiplication of the number of 

chemotactic, reproduction and elimination/dispersal 

steps determines the stopping criterion. This 

increases the execution time of the BFA.  

Consequently, Farahat, et al. [16] proposed an 

adaptive stopping criterion to treat this problem. By 

employing this criterion, the number of iterations is 

determined according to the improvement of the 

objective function where the chemotaxis process 

stops either when the solution achieves a specific 

condition or when chemotactic steps equal to its 

maximum value [16].  

In adaptive BFA (ABFA) proposed in [16], the 

bacteria still move randomly. This may cause delay 

in achieving the best solution of the optimization 

problem. So, random movement of bacteria can be 

improved in the proposed method by combining the 

MBFA and WPSO where the suitable direction of 

each bacterium will determined by its best position.      

In addition, a diversity strategy based on constriction 

coefficient is used in this paper to avoid the 

premature convergence [17]. 

The steps of the proposed method can be summarized 

as follows: 

Step 1: Initialize all parameters (Nb, Nl, Ncs, Nrs, Nes, 

Pes, C(i), φ(j), θ(j,k,l), c1, c2, r1, r2, wmin, wmax) 

and create a random vector φ( j) from [-1, 1]. 

Step 2: Begin the elimination dispersal loop: l = l+1. 

Step 3: Begin the reproduction loop: k = k+1. 

Step 4: Begin the chemotaxis loop: j = j+1. 

 Take a chemotactic step for each bacterium (i). 

 Calculate the objective function F(i, j, k, l). Let 

Flast = F(i, j, k, l) therefore, the best value can 

be found. 

 For i=1,…,Nb, both tumbling and swimming’ 

decision can be taken as follows: 

Tumble: the best position of each bacterium and 

the global best position will decide the direction 

as follows: 

 

 
                                                                           (13) 

where   

 

                                                                           (14) 

          
 

       and c1+c2 > 4. 
 

Move: Let: 

 

                               (15) 
 

 Compute: F(i, j+1, k, l), then let:   

 

 

 

 

 

 

 

 
 

                                                                               (16) 

 Loop of swimming: Let q = 0 (q is swim 

length’s counter). 

While q < Nl 

Let q =q + 1 

 If F(i, j + 1, k, l) < Flast, then let:  

Flast = F(i, j + 1, k, l).  

 Let              

 
 

 At that moment, compute the new objective 

function F(i, j + 1, k, l) using (16). 

 Else, let q = Nl (finishing the while statement). 
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 If i Nb, proceed to the following bacterium. 

 After that the best objective value gotten 

(Fbest(j)) can be calculated. 

 The difference (f) in the objective value 

obtained in the current chemotactic step can be 

computed as follows [16]: 

 f(j) = Fbest(j) − Fbest(j − 1). 

 If j > Ncs /2. 

 If  

and bm < Ncs /2. 

 j = Nc (stop chemotactic steps). 

Step 5: If j < Ncs, return to step 4. 

Step 6: Reproduction: each bacterium’s health can be 

computed as: 

                              

                                   (17) 

 

Arrange the bacteria in an ascending order 

where bacteria with highest health will die 

while the residual bacteria reproduce. 

Step 7: If k < Nrs, return to step 3, otherwise, go to 

step 8. 

Step 8: Elimination-Dispersal: a few bacteria are 

removed with small probability (Pes). So, the 

number of bacteria in the population is kept 

constant. 

Step 9: If l < Nes, then return to step 2; otherwise 

end. 

4. SIMULATION RESULTS 

The proposed method is evaluated by applying it on 

three commonly used test systems. These systems are 

5 thermal generation units system, 10 thermal 

generation units system and 30 thermal generation 

units system. The required data of each system (Fuel 

cost’s coefficients for each thermal generator unit, 

valve-point’s coefficients for each thermal generator 

unit, minimum and maximum output power of each 

thermal generator unit, limit of ramp-up and ramp-

down of each thermal generator unit, B - matrix 

coefficients and load profile) is collected from Ref. 

[18]. To sake the fair comparison with other 

methods, valve-point effect is considered for the 

three test systems, while the transmission losses are 

considered only for the first two systems. Table 1 

shows the details of these three commonly used test 

systems. 

The proposed method is executed in personal 

computer with Pentium 4 processor, 2.8 GHz clock 

frequency and 4 GB of RAM using MATLAB 

R2012a. In each system, 100 independent runs were 

carried out with random initial values for each run 

and results (minimum, average, maximum) were 

obtained. 

In order to execute the proposed method, some 

parameters should be adjusted first. These parameters 

affect not only the speed of convergence but also 

solution’s quality. In this work, these parameters are 

chosen using empirical tests by solving the DED 

problem with different values of the parameters. 

Table 2 shows the best values of the parameters used 

in each system. 

 4.1 Test System 1: 5-Unit system 

The best solution obtained for this system is shown in 

Table 3. The performance of the proposed method is 

compared with adaptive particle swarm optimization 

(APSO) algorithm [20], simulated annealing (SA) 

algorithm [19], artificial immune system (AIS) [21], 

Maclaurin series-based Lagrangian (MSL) method 

[22], GA [23], PSO [23], artificial bee colony (ABC) 

algorithm [23], time varying acceleration coefficients 

improved particle swarm optimization (TVAC-IPSO) 

[24], hybrid immune-genetic algorithm (HIGA) [2] 

and hybrid genetic algorithm and bacterial foraging 

(HGABF) [25]. This comparison is shown in Table 4. 

The results of Table 4 prove that the proposed 

method yields better results than other methods.   

To test the superiority of the solution, the standard 

deviation (SD) from 100 independent runs by the 

proposed method is obtained. The value of this SD is 

equal to $13.63. This shows a small range of 

variation the total cost achieved by the proposed 

method. This is evidence of the robustness of the 

proposed method.  

4.2 Test System 2: 10-Unit system 

The performance of the proposed method is 

compared with evolutionary programming (EP) [26], 

hybrid evolutionary programming and sequential 

quadratic programming (EP-SQP) [26], modified EP-

SQP (MHEP-SQP) [26], GA [23], PSO [23], ABC 

[23], improved PSO (IPSO) [27], Enhanced cross-

entropy (ECE) [28], AIS [21], enhanced bee swarm 

optimization (EBSO) [8], HIGA [2], enhanced 

adaptive particle swarm optimization (EAPSO) [29] 

and HGABF [25]. This comparison is shown in Table 

5. These results demonstrate that the proposed 

method is more efficient than other methods.   

The obtained SD from among 100 independent runs 

in this system is $199.87 which emphasizes again the 

robustness of the proposed method. 

4.3 Test System 3: 30-Unit system 

Many state of the art methods are used in comparison 

in this test system. These methods are EP [30], EP-

SQP [30], MHEP-SQP [27], IPSO [28], improved 

chaotic (ICPSO) [31], harmony search algorithm
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Table (1), The Details of the Three Test Systems. 
 

 System 1 System 2 System 3 

Number of generation 

units 
5 10 30 

valve-point effects Yes Yes Yes 

Constraints used to sake 

the fair comparison with 

other methods 

 Transmission losses. 

 Generation limits. 

 Ramp-rate limits 

 Transmission losses. 

 Generation limits. 

 Ramp-rate limits 

 Generation limits. 

 Ramp-rate limits 

Dispatch horizon One day with periods of 

1h. 

One day with periods of 

1h. 

One day with periods 

of 1h. 

Data of the system 

(coefficients of each 

generator, minimum and 

maximum output power of 

each generator and limit of 

ramp-up and down of each 

generator) 

Data of this system is 

collected from Ref. [18] 

Data of this system is 

collected from Ref. [18] 

Data are gained by 

tripling the data of 

system 2. 

B - matrix coefficients These coefficients are 

given in Ref. [18] 

These coefficients are 

given in Ref. [18] 

Transmission losses are 

neglected to sake the 

fair comparison with 

other methods. 

Load profile Hourly load values are 

extracted from Ref. [2]. 

Hourly load values are 

extracted from Ref. [2]. 

Hourly load values are 

extracted from Ref. [2]. 

 

Table (2), Parameters of the Proposed Method for Each Test System. 
 

 System 1 System 2 System 3 

Parameters of MBFA 

Nb = 100, Ncs = 25, Nl = 

4, Nrs = 4, Nes = 2, Pes = 

0.25 and C(i) = 0.1 

Nb = 120, Ncs = 30, Nl = 

4, Nrs = 4, Nes = 2, Pes = 

0.25 and C(i) = 0.1 

Nb = 120, Ncs = 50, Nl = 

4, Nrs = 4, Nes = 2, Pes = 

0.25 and C(i) = 0.1 

Parameters of WPSO 
c1=c2=2.1, wmin=0.2 and 

wmax=0.9 

c1=c2=2.1, wmin=0.4 and 

wmax=1.2 

c1=c2=2.1, wmin=0.4 and 

wmax=1.2 
 

Table (3), The Best Solution Obtained for System 1 (5 Unit System). 

H
o

u
r 

P1 P2 P3 P4 P5 Loss 

H
o

u
r 

P1 P2 P3 P4 P5 Loss 

1 10.00 20.00 30.03 123.08 229.80 2.91 13 62.60 99.14 111.30 211.43 230.08 10.55 

2 10.00 20.00 54.44 124.58 229.21 3.23 14 48.52 98.95 111.30 211.22 230.08 10.07 

3 10.00 28.55 87.10 124.23 230.02 4.90 15 36.66 98.12 111.30 186.97 230.08 9.13 

4 11.38 56.51 111.99 125.22 231.32 6.42 16 10.00 98.55 111.30 137.20 230.11 7.16 

5 10.12 86.51 110.32 126.21 231.30 6.46 17 10.00 86.65 111.41 126.41 230.15 6.62 

6 10.12 97.33 110.32 167.00 231.12 7.89 18 10.21 101.1 107.27 167.25 230.08 7.91 

7 10.12 100.15 83.46 210.09 231.02 8.84 19 11.30 99.56 110.55 211.44 230.08 8.93 

8 13.27 100.99 107.26 211.43 230.08 9.03 20 41.73 98.68 131.80 211.44 230.38 10.03 

9 42.26 104.84 111.54 211.43 230.08 10.15 21 38.06 100.5 109.92 211.44 230.02 9.89 

10 62.31 99.11 111.54 211.43 230.11 10.50 22 10.00 98.88 109.92 162.91 231.17 7.88 

11 75.00 103.14 111.30 211.43 230.08 10.95 23 10.00 98.30 109.92 126.00 188.70 5.92 

12 73.99 98.78 137.03 211.43 230.08 11.31 24 10.00 97.83 92.45 126.00 141.22 4.50 

Total cost =  40160.54 $ 
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Table (4), Fuel Cost Comparison for System 1 (5-unit system). 

Method Minimum Cost ($) Average Cost ($) Maximum Cost ($) 

MSL [20] 49216.81 NA* NA 

SA [19] 47356.00 NA NA 

GA [23] 44862.42 44921.76 45893.95 

APSO [20] 44678.00 NA NA 

AIS [21] 44385.43 44758.84 45553.77 

PSO [23] 44253.24 45657.06 46402.52 

ABC [23] 44045.83 44064.73 44218.64 

TVAC-IPSO [24] 43136.56 43185.66 43302.23 

HIGA [2] 43125.37 43162.24 43259.35 

HGABF [ 25] 41574.80 41599.68 41652.56 

Proposed method 40160.54 40182.21 40220.30 
 

Table (5), Fuel Cost Comparison for System 2 (10-unit system). 

Method Minimum Cost ($) Average Cost ($) Maximum Cost ($) 

EP [26] 1054685 1057323 NA 

EP-SQP [26] 1052668 1053771 NA 

GA [23] 1052251 1058041 1062511 

MHEP-SQP [26] 1050054 1052349 NA 

PSO [23] 1048410 1052092 1057170 

IPSO [27] 1046275 1048145 NA 

AIS [21] 1045715 1047050 1048431 

ECE [28] 1043989.154 1044470.0849 NA 

ABC [23] 1043381 1044963 1046805 

HIGA [2] 1041087.802 1042980.147 1044926.653 

EBSO [8] 1038915 1039188 1039272 

EAPSO [29] 1037898 1038109 1038238 

HGABF [25] 1036507 1037068 1038092 

Proposed method 1035573 1036076 1036762 
 

Table (6), Fuel Cost Comparison for System 3 (30-unit system).  

Method Minimum Cost ($) Average Cost ($) Maximum Cost ($) 

EP [30] 3164531 3200171 NA 

EP-SQP [30] 3159204 3169093 NA 

MHEP-SQP [26] 3151445 3157438 NA 

DGPSO [33] 3148992 3154438 NA 

HS [32] 3143253.84 NA NA 

IPSO [27] 3090570 3090570 NA 

CE [28] 3086109.595 3088869.8572 NA 

ECE [28] 3084649.032 3087847.1893 NA 

ICPSO [31] 3064497 3071588 NA 

HHS [32] 3057313.39 NA NA 

HIGA [2] 3055435.068 3058126.233 3066754.92 

EAPSO [29] 3054961 3055257 3055641 

EBSO [8] 3054001 3054697 3055944 

HGABF [25] 3050235 3051291 3053567 

Proposed method 3047150 3048277 3050349 

 

*  NA: means that this data is not available in the reference.   
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(HS) [32], hybrid swarm intelligence-based harmony 

search (HHS) [32], deterministically guided PSO 

(DGPSO) [33], cross entropy (CE) [29], enhanced 

cross entropy (ECE) [29], HIGA [2], EAPSO [30], 

EBSO [8] and HGABF) [26]. This comparison is 

shown in Table 6. In this test system, the gained SD 

among 100 independent runs is $502.08. This proves 

the robustness of the proposed method despite the 

number of generation units. 

From the results in tables 4 - 6 which depicted in 

figures 1-3, one can notice that the proposed method 

is compared with different stat of the art methods 

based on minimum, average and maximum fuel 

costs. The stat-of-the-art methods’ results are 

obtained from their references. 

For the three test systems, the maximum fuel cost 

obtained using the proposed method is better than the 

minimum fuel cost obtained from all methods except 

HGABF method in system 2 and 3. This shows the 

superiority of the proposed method over other 

methods for different systems with different number 

of generation units. Also, the results prove the 

stability of the proposed method which evident from 

the small difference between minimum and 

maximum fuel cost whatever the number of 

generation units.  

As we know, the execution time is highly affected by 

many factors such as, coding the algorithm and the 

configuration of the computer. So, in this paper, the 

execution time of the proposed method and HGABF 

method is compared using the same computer 

configuration. The execution times of other methods 

are not used in the comparison because they may 

have employed different computer configuration. 

Figure 4 shows the results of this comparison. These 

results demonstrate the high convergence speed for 

the proposed method over HGABF and original BFA 

methods. This is due to employing the adaptive 

stopping criterion in the proposed method which 

reduces the number of chemotaxis steps. The real life 

DED problem is solved offline. This makes the 

execution time of the proposed method (several 

minutes) is suitable to solve this problem.   

5. CONCLUSION 

In this work, an optimization method is proposed to 

solve the DED problem. The proposed method is 

resulting by merging BFA, adaptive stopping 

criterion, PSO, adaptive inertia weight factor and 

diversity strategy. This leads to avoid the drawbacks 

of these methods and gain the merits of them. The  

 

 

 

Fig. 1, Fuel Cost Comparison for System 1 (5-unit system). 
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Fig. 2, Fuel Cost Comparison for System 2 (10-unit system). 

 

 

 

 

 

Fig. 3, Fuel Cost Comparison for System 3 (30-unit system). 
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feasibility and effectiveness of the proposed method 

have been confirmed using three test systems. The 

simulation results were compared with some of state 

of the art methods. The results show the superiority 

of the proposed method over these state of the art 

methods for solving the DED problem.  

 

Fig. 4. Execution time for different methods 

 

Also, they confirmed the capability of the proposed 

method to get the global solution of the DED 

problem.  
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