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DAMPING MATERIAL FOR STABILIZATION OF PANEL FLUTTER AT
HIGH SUPERSONIC SPEED
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Abstract

Exterior panels forming the exterior skin of flight vehicles traveling through the
atmosphere at high supersonic speed are often susceptible to the occurrence of limit-
cycle type self- excited vibrations called flutter. The development of methods for the
prevention and control of flutter, without adversely affecting the weight and cost, is
desirable and it is the objective of this work by using damping materials.

The nonlinear equations of motion for panel flutter using Von-Karman's farge deflection
plate theory are modified to include damping material layers. At first, a viscoelastic
damping layer is considered to be perfectly bonded to the surface of the plate to
investigate the extension damping treatment. Secondly, the viscoelastic damping layer
over the plate is constrained by a third layer called constrained layer to investigate the
shear damping treatment.

The two types of damping treatment proved to be able to prevent panel flutter
successfully at prescribed operating condition. But for the same panel weight, the
constrained damping layer technique is more efficient than the free damping layer
technigue.
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\. Introduction:

Panel flutter results from the interaction
between the panel and the flow
pressure forces brought about by the
panel motion. This causes a loss of the
stability of the panel in its un-deformed
shape, so that any disturbance applied
to it leads to oscillations of growing
amplitude, Thus, it i8 a self excited
oscillation resulting from the dynamic
instability of the aerodynamic, inertia,
and elastic forces of the system. This
growth is limited, however, by the
membrane tension stresses induced in
the panel by the flutter motion itself. The
result of this self-limiting action is a
sustained oscillation of constant
amplitude, called limit-cycle motion.

Due to the complexity of panel flutter,
most theoretical studies make use of
simplified assumptions, see Ref. [10]
and [15]. However these assumptions
are usually so restrictive that the
theoretical model does not accurately
represent realistic conditions. in factit is
found that the application of the exact
aerodynamic theory does not remove
the discrepancies that presently exist
between theory and experiment for
flutter of stressed panels. The inclusion
of structural damping is found to have a
farge effect in some instances and can
tend to eliminate some of the
differences. '

There are certain unifying features
common to all aeroelastic problems
which provide a convenient framework
for introducing and classifying the entire
subject. These fealures include the
casting of the aeroelastic equations in
an operator form and the generalized
solution of such operator equations, see
Ref. [1]. Investigation of the theoretical
foundations, methods of analysis for
treating linear aeroelastic models, their
nontinear  counterparts, and the
requisite aerodynamic theory were
discussed, with the three levels of
approximation to the motion dependent
aercdynamic pressures on an oscillating
panel, see Ref. [2]. The simplest of

these and consequently the most
widely used is the so called " piston
theary, see Ref. [3].

Once the mathematical model has
been established as in Ref. {10] and
[15], the methods of solution are
required to investigate the parameters
variations. Fortunately, as far as the
treatment of the panel flutter of a finite
plate is concemed, the Galrkin's
method gives qualitatively ' correct
results. Von Karman's large defiection
plate  theory and  quasi-steady
aerodynamic  theory have Dbeen
employed. Galerkin's technique has
been used in the space variables and
the ordinary differential  system
obtained is solved by an asymptotic
expansion using method of multiple
time scales. The results obtained show
that, as a first approximation, the
amplitude of the limit cycle depends
only upon the fundamental parameter
{non-dimensional aerodynamic
loading), the aspect ratio, and the
damping parameter  (including
structural damping effect). The pre-
flutter panel motion and the motion
during flutter were studied in detail, as
shown in Ref. {4].

Flutter  oscillations rarely cause
immediate failure of the panel, but they
may produce faligue failure after a
sufficient period of time. The need to
prevent this occurrence, either by
suppressing flutter entirely or by limiting
the severity of the panel motion, often
becomes the critical design criterion
that determines the required thickness
{or more generally the stiffness} of the
panel. Many parameters govern the
resonance fatigue behavior including
the detail design, the skin thickness
and materials, the stiffener
configurations and the damping of the
structure. Damping can be introduced
when needed into a structure without
creating adverse effects in design,
weight, or cost.
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ll. Problem Formulation

The plate under consideration with
cavity is shown in Fig. 1. The
dimensions and the properties of the
plate are given in Table2. The axes are
taken to be such that the x-, y- axes are
in the plane of the plate passing through
its reference plane (z=0), while the z-
axis is positive upwards. Under the
assumptions that plate thickness is
small in comparison with smallest lateral
dimension, which is the case in most
practical applications, the Kirchhoff's
hypothesis may be assumed to be valid.
With this assumption the in-plane
displacements "u”, "v" and the
transverse deflection "w" at an arbitrary
point of the plate in the x, y, and z
directions will be as given in Ref. [10]
and [15]. The final aero-elastic
equations of the plate in a non-
dimensional form is found to be:

The U-equation is given as:

_ — - h - _—
u.§§+d1f2u.nn+d2fv,gn+ _a‘{W_QW.§E+

d1f2V_V_.§VF.nn+d2f2“"’-.nV_V.tn}=0 (1-a)
The V-equation is given as:
AV g HAV gyt dafl g+ B {PWAW p*

W W e +02W W g} =0 (1-b)

The W-equation is given as:
1 — - -
?{W.ﬁi‘ﬁi"’zfzw‘iinn)’fdw. annatE{

A AU BTy rTg (R0 4y BTy
AW e+ AgW. m\J dend§+wn- ;1[—{
12 —{u ;w«wfzu W aqH(1-1) U g
WitV W ag+ UV W g+ (1)
W in] +6[W2 W g +TW2 W o+

WeeHW W W W W e l}=0 (1-c)
Where, dy=(1-v)/2 and d,=(1+y)/2

The form of these equations is general
see Ref [1] and Ref. [9]. Galerkin's

method is then used to reduce the
obtained equations of motion to a set of
nonlinear ordinary differential equations
having the non-dimensional time
variable as an independent variable.
The displacement u, v, and the
deflection w are expanded in the form
of a generalized double series of
modes. These modes satisfy the
appropriate geometric boundary
conditions of the plate, thus:

G°(§,n.r)=°>°;°§_U’mn(r)x“*mctw‘”’n(n) (2-a)

V(&.n,1)= zzvmn(r)x‘“’ YY) (2-b)

m=1n=1
wo(E.n,7)= zgwmnmxm’ (©)Y*n(n) (2-c)
m=1n=
where X(€) and Y{(n) are the modal
functions that “satisfy the boundary
conditions imposed on u, v, or win the
¢ and n direction respectively.

10 +A2V +A3 W =0 3

+ + = -a
AIJ 2 Vit AL 5 (3-a)
VB2 B3 W W0 (3b)
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The vectors U mp(t) and an (r) are
computed from equations (3-a) and (3-
b) algebraically and then substituted
pinto equation {3-c) to yield the Duffing-
t; pe equation in the following form:
c1 W+)\dCZW+C3W:t {ng® + n ATy
I] mn, « ij mn, ij
mn —

C4W / N, Allen ““7}05 w+ )\ECG W,

- mnlrs___

+ACC7 W -T WWW=0 (4)
mn ‘J mn |p s
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This tensorial nonlinear  ordinary
differential equation represents a set of
{ixj) nonlinear ordinary differential
equation which can not be solved
exactly.

To complete the solution, the boundary
conditions for the plate must be
specified. For the purpose of
comparison with the resuit obtained by
the experimental report by Ref. 6 ], the
boundary conditions are specified to be
clamped all around with no in-plane
movements, so that the out of plane
boundary condition is fully-clamped and
the in-plane boundary condition is edge-
fixed, and these conditions are written
as:

w=w=u°=v°=0 at both x=0 & x=1(5-a)
w=w =u’=v°=0 at both y=0 & y=1 (5-b)
And the modal functions are then given

by:

Xy”’m(§2=x("’m(§2=sin(mﬂﬁ) (6-a)

And Y n)=Y"y(n)=sin(nmn) - (6+b)

While: X" (€)=coshomE—CcoSamE
—ym{SiNhotmE—~Sinamt) (6-c)

and: Y™, (n)=coshcan—cosomn
—yn(sINhann—sinc.n}) (6-d)

where g, and yn, are the coefficients for
the m"™ flexural mode and can be
calculated from the following equation:

coshom,Cos om=1 (7-a)
Cosham—COSamE—ym(Sinhom
—sinam)=0 (7-b)

The values of these coefficients are
given in Table 1, see also Ref. [13].
Once the displacement modal functions
are specified for the prescribed
boundary conditions, the coefficients of
integration represented by the matrices
A1to A3, B1to B3, C1toC9,and T can
be calculated numerically, see Ref [13].
The number of the terms in the
assumed displacement series solution
given by (2-a), (2-b), and (2-c) are
arbitrary.

Since an exact solution of equation (4} is
not available, an approximate solution
will be obtained by the method of
harmonic balance. This method is used
to seek a periodic solution. In the
frequency domain the differential

operator d/dr is replaced by jw and,
consequently, the system of nonlinear
differential equations is converted to a
set of nonlinear algebraic equations.
When this set has a solution with real
positive values of frequency and
amplitude and real values of the phase
angles, it indicates the occurrence of
limit-cycle oscillations of the specified
form. Thus one seeks a solution of the
following form:

ﬂmn(T)=Amn3in(wT+(Dmn) (8-a)
Win=Amn[COSPmntisSin®mpsinuw:  (8-b)
Wina =WAR[ICOSPmn-8iNPpn]sinw: (8-c)

Winn m=-w2Ama]cOSDpnt

jSiN®malsinw: (8-d)
WinaWes Woa=AmnArsApt{C0S PnCOS D
COSPpa-sin®p,SIND (08D -C0S P
SINDPSiNPpg-SiNPrcosPSiINDp)-
J[SINPnasin®Sin®py-cosPmacosPys

SINP -8NP raCosPco8Pe-COSDn

sin®scos Ppolisin’us (8-€)
Where, 3
sinstT(3sinwr + 4 sin3uw) (8-

The second term which is of higher
harmonic ill be dropped out and:

sirfw:=  sinws (8-g)

Substituting Wn, from equations (8)
into the Duffing type equation (4) and
equating separately the real and
imaginary parts of the equations, the
set of 2(ixj) nonlinear algebraic
equations in the unknown variables
given by (ixj) amplitudes, ((ixj)-1) phase
angles, and the flutter frequency (wy) is
obtained. These equations are soived
numerically by the modified Newton-
Raphson algorithm.

lll. Flutter Control by Damping
Treatment

in Ref. [10] and [15], it is found that
flutter occurs at a certain dynamical
pressure. This critical dynamical
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pressure is function of the speed and
aftitude of flight (pressure, temperature,
and density), the Mach number, and the
rigidity of the plate. If the aircraft has to
fly around this flight condition, it is
necessary to find out some way to
suppress the flutter or to prevent its
occurrence. One obvious way to
prevent flutter at this flight condition is to
increase the rigidity of the plate by
increasing its thickness or by choosing
another material with higher modulus of
elasticity. In fact this technique will lead
to excessive weight and cost. Another
technique, which is used in this chapter,
to prevent flutier is the application of a
damping layer to the surface of the
plate. Ideally, the material used for
dampers should eliminate vibrations of
all possible frequencies occurring in the
plate at all temperatures of operation. In
addition, the material shouid be strain
insensitive and have a low density.
However, the successful application of
such technique depends a great deal on
three important factors. These are the
knowledge of how the properties of the
damping materials vary with the
environment to  which they are
subjected, a good understanding of the
dynamics of the structure to which the
damping material is to be applied, and
finally, how to design a material in
damping treatment configuration for the
desired performance. In fact, there are
mainly two types of the surface damping
treatments called extensional damping
and shear damping, which will be
illustrated separately. The damping
material in the case of extensional
damping is usually stiff, but not stiffer
than the base plate, while in case of
shear damping it is soft, such as rubber
like materials. The rubber like materials,
often have a far greater damping
capability and are more linear with
respect to strain amplitude. On the other
hand, they are usually temperature
sensitive.

lll.1 Damping Material Data

The viscoelastic material used is the
3M I1SD # 113 viscoelastic polymer,
This material is manufactured into two
types of tapes named SJ 2040 X and
SJ 2056 X. Both of them consist of two
layers of 3M ISD # 113 viscoelastic
polymer material, with  polyester
interleaving to afford dimensional
stability during application. SJ 2040 X
is available in rolls, while SJ 2056 X is
sheet version of the same material with
double liner. These two forms of high
energy dissipative polymer, which
when properly incorporated into a
constrained layer damping
configuration, can afford excellent
control of the resonance induced
vibration problems. The dynamic
performance, however, of the ISD #
113 is well characterized and typical
data for this viscoefastic polymer is
shown in Fig. 2. To find out the loss
factor and the shear modulus first, the
frequency range must be known. From,
the frequency value (horizontal lines)
and the operating temperature
(isothermal lines), the point of
intersection can be located on the
curve. From this point going vertically
up and/or down until crossing the
modulus and loss factor curves, their
values are given on the left vertical
scale. Physical data such as
thicknesses, densities, and availability
of these types are given in TableZ.

1.2 Extension Damping Treatment

In this technique, a viscoelastic
damping layer is bonded perfectly to
the surface of the plate see Fig. 3. As
the plate vibrates in bending, the
damping layer will deform principally in
extension and compression in planes
parallel to the plate surface. Actually
this type of treatment is clear and
simple and can be applied directly to
the plate in service where these layers
are available with its bonding material
in the market. The viscoelastic damping
layer material must be chosen carefully
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to perform efficiently in the range of the
operating temperature of the plate. The
feature of this type of damping is that
the system loss factor increases with
the thickness, elasticity modulus and
with the loss factor of the viscoelastic
layer. The damping effect is obtained
due to internal losses in the viscoelastic
layer resulting from the alternating
extensional and compressional strains.
As might be expected, the performance
of the free layer damping treatment
depends strongly on the method of
attachment to the plate. This adhesive
tayer must be as thin and stiff as
possible. The plate with the damping
layer is shown in Fig. 15. The neutral
ptane of the plate will be shifted a
distance, m, from its original position as
a result of the bonded layer. This shift
can be determined by recognizing that
the net thrust in the x- and y-directions
in the absence of the in-plane forces
must be zero, i.e

5RJ 0,dz=0 and );I 0,%dz=0 (9)

where under pure bending,
(k}—-G{k)ZW and Uy(k}—-G(k)ZW ¥y (1 0)

where: is the shear

G =_Lk}_
“ 72 (1-vg)
modulus of elasticity of the k™ layer.

After performing the integration in (9)
and simpiifying, the following expression
for the neutral plane shift is given as:
ghz !l‘*‘vzi,{ Ezhz!lﬂl (11)
1y (1+v4 Eqhq (1+y4
Once the neutral plane shift, m, is
calculated then from the strain-
displacement relations, the stress
resultants Ny, Ny, Ny and the resultant
couples My, M,, My for the composite
plate can pe determined by the same
procedures as in Ref [10] and [15]. it is
found in this case that:

N=Qu AT U, (1/2)0 0 5
|

[v°y +(1/2) w?,] - Q3 T'-u_.T[W'”‘I"

Qe 4E w, ] (12-3)
Ul

Ny =Qq E_Lbl[v" W J+Qy “15 by
l

[U+(172) w2,] Qs " "'2 [w,,,,]

.U|E h|

Qq T2

W] (12-b)

ny”Q5G| I[Ucly+V°_x+W.xW.y] —

2 Qs Gy hy? {wyl (12-c)
Mx Qs Elhl )[U o 1)(2)WZ)J+Q4UIEIhI
Eh (1-¥1%)
[v° ,+(1f2)w2 = Q7 501y, Weed +
v,E h?
Qs 12‘(1 u')[ ) (12-d)
M, Qs E.h] oV +(112)w2,1+Q4”tE hl)
0 Eih/’
[u®, + (1!2)w2,J -Qy 12(;-1';.2)[‘”-"} +
LED [ (12-€)

® 2(0)
MW—QGG|h[ [Uo +V° +

W, -2Qe Q'E'—{wx,,} (12-4) -

Where, Q4, Qz, and Qs represent the
contribution in the membrane rigidities
of the plate due to the damping layer.
They are calculated and found to be:

01.—_{ s Mﬂ } (13-a)

hq (1-¥%)

Qz_{ 1+ uZ_EZM21)} (13-b)

V4 Eq h1 (1-.U 2)
Qs={ 1+ 2 | (13-¢)

Q3, Q4, and Q6 represent the
contribution in the coupling rigidities of
the plate due to the damping layer.
They are also calculated and found to
be:

m Exh%(1-v%) 1 hy m

i ERATY )% Zh, e h (13-

m Uzrzhz 1-v%)
Qa-[dﬁ' yiE1h“(1-v%) E‘z 2}) (13-e)

m GzEzhz 1-].! 1 h1 m
Qg—[ 51E1h1 (1-p%2) 2nsm; }) (13-)
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Q7, Qs and Qp represent the
contribution in the flexural rigidities of
the plate due to the damping layer.
They are calculated and found to be:

Q?‘[(1+12 W )%%%—ﬂ% [4+
2
3:17— 12-;,J +12—2' 12—5— ]} (13-9)

1

.U E h1 (1 -y )
h‘ 12”—’2h +12—;_. 12 e

Qg{(1+12 @%ﬁ%ﬁ (44614
Gihy™(1-y )t
3—; 12"'““‘+12h a2 (134

As shown in Ref. [10] and [15], these
resultant stresses and couples are
substituted into the equations of motion
to get the modified equations with the
free layer damping. In fact, g, in
equations will stand for the aerodynamic
pressure. It is also to be noted that the
modulus of elasticity and the shear
modulus for the damping layer in the
previous equations is given by its
complex form as:

Ez=E 2(1+inp)& G2=G »(1+inp) (14)

Thus, there are three equations of
motion in term of the displacements.
These equations again are
nondimensionlized and solved by the
same procedures given in Ref. [10] and
[15). The effect of the free damping
layer is shown in Fig. 4. In this figure it
is clear that with the use of damping
layer, the critical aerodynamic loading
will be shifted to a higher value which
means that, at the original given flight
regime, there will be no flutter at all.

1.3 Shear Damping Treatment

in  this technique the viscoelastic
damping layer over the plate is
constrained by a third layer called
constraining layer, see Fig 5. As the
plate  vibrates in bending, the
constraining layer will constrain the
damping layer and force it to deform in

shear beside the extension and the
compression. This shear motion in the
damping layer will result in more
dissipation of energy in the system.
The ability of the third (constraining)
layer to produce a shear motion in the
damping layer without itself
experiencing excessive stretching is
one of the important features of this
type of damping. Although the
constraining layer must be stiffer than
the damping layer, it is not necessarily
stiffer than the base plate. In our
formulation we consider that the
material of this layer is the same as
that for the plate. in this case is
determined in different manner which is
the main difference from the previous
one in section I1.2. The calculation of
the neutral plane shift has been done
by Ref. [8], [9], {11], [12], [13], and [14].
Here we will present the basic relations
and the final expression for m. Fig. 7.,
shows an element of unit width of the
three-layers plate in fiexural vibration.
The total bending moment M may be
expressed as:
3

D L= My +3 N (15)

X G i=1
Where :
D - the flexural rigidity of the cross-
section.
M - the moment exerted by the forces
on the i Jayer about its own neutral
plane.
N, - the net extensional forces on the i
layer.
hie - the distance from the center of the
" layer to neutral plane of the
composite plate.
The various individual moments M;
may be expressed in terms of the
curvatures as:

_ Eih{ 9o

Mn = 123 ax (16-3)
E; hy® a0 _3_Lp_ )

Mz = =5~ (3 -3¢) (16-b)
Gahy 90 _

M33— 12 3% (16 C)
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The distributions of the extensional
strain and stress for the three-layers
element of the composite plate are
shown in Fig. 8., from which it is
possible to deduce that the net
extensional force in a given layer is
given by the product of the extensional
stiffness of the layer and the extensional
strain at its mid-plane, i.e.

Ny = E;hihe 2% (17-a)
o by 2
= gy a2 dy .
NZ - E2 h2 (h20 a.x 2 ax ) (17 b)
8 a
Ni= Eshs (haol e SE) (170

where; @ Is the flexural angle (ow/dx).
Y Is the shear strain.

In case of pure bending the net
extensional force on each composite
element must vanish, and by expressing
exch hy, as hy —-m, one may solve for
th shifft m of the neutral plane by
setting the sum of the forces equal to
zero, i.e. :

2Ni=0 (18}

from which the neutral plane shift m is
calculated to be:

3
Eahahar+Eshshi—|{ %2 Esholhe 778
m= Evh +E5h, TE3h (19)

To find dw/é @, the stress-strain relation
for the middie layer may be written as:

1 dN;
Y=- '62- _5)-(_ (20*8)
Also the shear strain, vy, itself is related
to its second derivative by:;

1 &
V= (20-b)

where p is the wave number given by:
4

p="%/ pwhiD {20-c)

From (47-a) and (47-b) we find that:

- Syhun-m
ha ax 1+g (21)
where the shear parameter g is given

(22}

Substituting from (20-¢) into (22) then
the result into {21) the relation between
the shear strain y and the flexural
angle @ is obtained. The finai
expression for the neutral plane shift
after substituting from (21) into (19) wilt
take the form:

GIEohzi+Ehshy]-[har-hy Ep 131)
me 2

= (23)
Q[E\h |+E2h2+E3h3]+{E1h1 +E -g ]

Some approximation can be made fo
find a simplified form of the neutral
plane shift. This approximation is based
on the assumption that the extensional
stiffness of the layer adjoining the base
plate is very small compared to that
base plate itself. It is also assumed that
the stiffness of the constraining layer is
at most one-fourth or one-fifth that of
the plate to be damped. That is;

Ezh<<Esh; and (Esha)?<<(Eqh;)?

Consequently, with these assumptions
in mind the neutral plane shift will be
given as:

e gEahshay (24)
Eths+g[Eqhs+Esh;
The forgoing analysis has only one
major restriction, that the three layers
of the composite plate must do the
same motion. This requires that the
wavelength of the flexural vibration be
the same in all three layers. Thus, the
flexural wave motions in the two outer
layers must be closely coupled to the
middle layer. If the shear parameter, g,
is very small relative to unity, then
wave motions can occur in the middle
layer itself, so that the two outer layers
can become decoupled. However,
since we are using thin plate theory in
our formulation, it will be assumed that
all thicknesses are small reiative to the
wavelengths of all possible types of
wave motion in all layers. Once the
neutral plane shift, m, is calculated,
then from the strain-displacement and
the stress-strain relations, the resultant
stresses N,, Ny, Ny, and the resuitant




Mansoura Engineering Journal, (MEJ), Vol. 33, No. 1, March 2008. M. 49

couples My, My, My, for the composite
plate can be derived, and given as:

Ni=Qy T (U (1207 o+ Qg 2
I
v .y+(wz)w%yl QB

—Q4‘ %‘w ] (25-a)

1-pj
Nﬁ){ﬁ% V(12w ]+Qz.v——2—'1 Ey by
g "
[u°, 1/2)w24 Q; ELhy E' h' [Wyy ]
”—'T—;’T;-'[Wu] (25-b)

Ny =Qs G h [ Uy + VO W Wy
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where Qy, Q;, and Qs represent the
contribution in the membrane rigidities
of the plate due to the damping and
constraining Iayers They are calculated

and founﬂto h Lop?
E2 ha 1-1,

O By (269)
. hs Uz E; hz1- -2
Q =1+ By Tu1 Eq hy 102 T, (26-b)
G
Qs —[1+h3 Gh, Ef] (26-c)

while Qs°, Q., and Qs represent the
contribution in the coupling rigidities of
the plate due to the damping and

constraining layers. They are also
calculated and found to be:

111 2 2
Q4.={'%: %zzf‘ﬁ?hﬁ -W:;; +—2h—;1 +
e, ) @5
%—Efi (L) (26-9)

and Q;, Qg&, and Qg represent the
contribution in the flexural rigidities of
the plate due to the damping and
constraining layers. They are also
calculated and found to be:
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Substituting these resultant stresses
and couples into the equations of
motion, see Ref. [10] and [15], the
modified equations with the constrained
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damping laver are obtained. The
modulus of elasticity, and shear
modulus of the damping layer are
substituted with the complex form given
by (14). The three equations obtained
are nondimensionalized and again
solved by the same procedures shown
in Ref. [10] and {15]. The effect of the
constrained layer damping on flutter
characteristics is shown in Fig. 9. It is
clear from the figure that using a
constrained layer damping will enable
prevention of flutter by shifting the
critical aerodynamic pressure at which
flutter occurs to a higher value far from
that for the given flight regime.

.4 Comparison between the Two
Types of Treatment

it is clear from the previous sections
that the two types of damping treatment
are able to prevent plate flutter
successfully and the question that
arises now is, of the two previous
techniques, which one is more
effective?. To answer this question, a
comparison between the two techniques
is shown in Fig. 10. It is clear from the
figure that for the same weight of plates
{which is a very important factor for the
design of the aircraft structures), the
plate with constrained damping layer is
more effective than the plate with free
layer damping. However, this efficiency
is balanced by greater complication in
analysis and application.

Important aspects which must be taken
into consideration while choosing the
viscoelastic materials are the range of
operating temperature and frequency.
For the constrained layer damping
treatment two extremes must be
explained. At low temperatures, where
the viscoelastic material is in its glassy
region, both the plate and the
constrained layer become rigidly
coupled and little shear deformation
occurs in the middle jayer. Hence, the
energy dissipation is also small. On the
other hand, at high temperature, where
the viscoelastic material is in its rubbery

region and soft, both the- plate and
constrained layer become almost
uncoupled. The energy dissipation in
this case is also minimal, even though
the shear deformation in middle {ayer is
high. This is because the shear
modulus of the middle layer is low.
Between these two extremes, the
material possesses an optimal modulus
value, so that the eneray dissipation
will be maximum. The maximum shear
deformation in the middie layer is a
function of the modulus and thickness
of the constraining layer, the thickness
of the damping layer, and the
wavelength of vibration in addition to
the properties of the damping material.
The term that contains these variables
is the shear parameter, g, given in
equation (22). It is to be mentioned
that, although the free viscoelastic layer
and the constrained viscoelastic layer
are useful treatments for damping
flexural waves in plates, It is possible to
improve their damping performance by
introducing a spacer layer between the
plate and the treatment see Ref [8].
This ideal spacer layer ideally would
have infinite shear stiffness, but an
extensional stiffness small relative to
that of the plate. The theory for the
three-layer plate developed previously
in section .3, can be adapted for the
case of the spaced constrained
viscoelastic layer by assuming that the
spacer and the viscoelastic layer act as
one composite shear layer. In fact this
modified technique increase the loss
factor of the system beside that it can
help to extent the operating
temperature for some higher values.
Another modified techniques and
materials can also be used in different
situations which are not studied here.

V. Conclusion

Since damping has a great influence on
suppressing flutter, one of the methods
which is simple and less expensive is
to bond a layer of viscoelastic material
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to the surface of the plate. A modified
way which is more efficient is to
constrain this layer by a stiffer layer (not
stiffer than the plate). This constraining
layer operates to shear the damping
layer and consequently improve the
damping  characteristics  of  the
composite plate by dissipating more
energy from the system. These two
methods depend mainly on the loss
factor of the damping layer, which is
function of the operating temperature
and the frequency range.

The two types of damping treatment are
able to prevent plate flutter successfully
at its prescribed operating condition. It
is clear that for the same weight of
plates, the plate with constrained
damping layer is more efficient than the
plate with free layer damping. However,
this efficiency is balanced by greater
complication in analysis and application.
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Fig. 1, Geomelry of the Plaie and Cavity with
Axes System
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Table 1, Values of a, and y,, in the Beam
Eigen function or a Clamped Plate.

M. 53

Table 2, Dimensions and Properties of the
Plate and Treatment Damping

M O Yin

1| 4.730040744862704030 | 0.98250221457623807
2 | 7.853204624095837557 | 1.00077731190726905
3 | 10.99560783800167100 | 0.99996645012540500
4 | 14.13716549125746410 | 1.00000144989765650
5 | 17.27875965739948100 | 0.99999593734438300
6 | 20.4203522456206100 | 1.00000000270759500
m

:; Qm+1) n/2 1.0

Lavyers.
Damping Layer
Plate [ sj204 | SI2056
0X X
Avatlability Rolls Sheet
Length (m) 0.7620 | 27.432 | 09144
Width {m) 0.1778 | 0.1016 0.5080
Thickness (x 10°m) | 0.8128 | 0.0215 | 0.0430
}’{;;u'ziizl;dodulus (x 72.398
f};g}’) Modulus 0107 [ 0160 [ 19995 | 21995
Poisson's Ratio 0.3300 | 0.4500 | 0.4500
Density (x 10° kg/m®) | 1.6189 | 0.9800 | 0.9800
Coeflicient of
Thermal Conductivity 11.700
{um/m.k)
Loss Factor 0.0050 | 1.0000 1.2000

Table 3, Experimental & Calculated Plate
Frequencies for Different Boundary

Conditions.

Clamp Simply Elastically | Experimenial
ed Supported | Supported Result
(58 72 130.9 128
165 82 138.5 136-142
178 99 160.2 (54-161
198 123 181.9 173-180
225 154 200.6 198-206
260 192 2169 216-228
302 236 261.5 262275 |
152 288 308.0 310-324




