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Abstract 

Sej;crable 1:on-linear progrcnz17?ing has been treated in noi7- 
linear programming mateviols (see the definition ofseparable 
nonlinear rogramming). This paper , concerns with n 
cor~tributed trentnxwt to arz integer separable nan-li~?~dv 
programming problem, substantiated by two examples to 
p-ove our theory. lVheve ns the separa5le progrnrnming 
opproaclz is at least compeiifive and probably superior for 
solving any convex separable progrunz, it should be used on n 
~to~~-cor;v~xpr~oblenz as ~vell zising high speed computers. 

I . Integer Separable Programming (objective function ) 
Def : Functions that can be broken into single variable 
components as in the form 

Where each of the f j  is a ccmtinuous h c t i o n  of a sin& 
variable xj , are said to be separable. For example, any 
linear function 

is obviously separable , with each ofthe component functions 
being fj (xj) = cj xj . So is any quadratic form that lacks cross- 
product terms : 



EL - Kafrauy M., et al. 

Optimisation probleks with non-linear separable objective 
functions are commonly found in life . For example , any 
objective that calls. for minimising the total variance of a number 
of independent random variables ( such as investments ) would 
posses the separability property, as would the objective of 
minimizing raw - material costs at a plant that orders each raw 
material from a different supplier . 
On the other hand, some special forms of objective functions can 
be made separable by certain transformations of variables . The 
simplest and most useful transform is applicable to the non- 
separated term xi xj defining 

Yi = (I /2)( Xj + Xj ) 
yj = (I  /2)( xj - xj) (1.4) 

then, it follows that 
2 2 

Xj Xj = Yi - Yj 

Thus , the term xj xi, in the objective function is replaced by the 
separable expression yi2 - yj2 and the two linear equations (1.4) 
are added to the set of constraints. 

Now, consider the separable programming problem 

subject to AX =b  } 

where X= ( XI, ... . . x,, ) , A is m x n , b is m x 1 and the 5 are 
continuous hnctions . The linear constraints are in standard form 
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. We begin by- approximating each of the functions fj (xj) as 
closely as is desired by a piecewise linear hnction T .  (4 J J This is done by determining a lower bound xj  and upper bound 

- x j  on the value of y ; choosing r, + I  break points 
(or values of xj) , denoted xjo , xjl .... ... X iri where 

and computing for each of these values the ordinate 

The f~tnction ij ( ~ j )  is then the piecewise linear cufve that is 
produced by joining the points 

with rj successive straight - line segments ( xj may be zero). 

Algebraically, any general point xj in the interval 

xjk < x j  _< xj,k+r can be expressed as a unique convex 

combination of the two end points: 

x j  x j k  + bj.kAl x j , k + l  ( I  

where 

hjk  + h j , k r r  =I,andhjk , h j , , + ,  20  
(1.7) 

The approximated objective value of x is then 

f a j (x j )=  h jk  f j k  + h j . k + l  j . k + l  (1.8) 
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To represent the piecewise linear function f. J , it is necessary to 
use logical restrictions in addition - to algebraic relations. Any x j . 
in the entire range X j j 5 , together with its 
approximate objective value , can be expressed uniquely in 
terms of the variables h jo , jl ,. . ., rj as follows : 

'.i 
where C hjk =land hjk >O,k=O,l,..., rj(l.ll) 

k=O 

provided it is also required that 

(i) At most two of the hjk can be positive, and 
(ii) Iftwoarepositivetheymustbeadjacent (i.e. 

if hjs and hjt are positive, then either t = s+l 
o r s = t +  1) 

Now, the approximating problem is constructed by choosing 
points that define a piecewise linear approximation for each 
f j(xj) and then making substitutions of the form (1.9) - (1.1 1) for 
each variable xj The i' constraint 

n 
C aij x j  = b i  
j=1 

becomes 

5 apt hjk = bi (1.12) 
j=1 k=O 

where aijk ' aij jk and the problem becomes the 
approximating problem : 
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and hjk 2 0 Vj&k 

and to restrictions (i) and (ii) Vj , j =I, ..., n J 
Which is identical to the original separable program 

n ,  
Max Z = z f j (x j )  

j=1 

s.t. AX=b 
- 

and , x x j  , j=l,.,.,n 

and nearly identical to the original separable program(I.5), such 
- 

that, x -  and xj agree with the feasible region. The closer the 
-J. 

approxmations 8- are to the given hnctions f; , the closer 
(1.13) is to (1.5) . hotice that, in forming the approximating 
problem ( I .  13) there is no need to construct a piecewise linear 
approximation to any function 6 (xj) that is already linear. 

.. 
Theorem 1.1 if the piecewise linear functions f j  are integers , 
then the optimum x; are integers . 
Proof: From the relation ( I  .9): 
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and since each hjk should be zero or one , then x; must be 
integers 

2. Integer Separable Programming ( non-linear constrained) 
To extend and make the separable programming approach 

described in article 1. applicabIe to non-finearly constrained 
problerns , we use Miller's [ I  I ]  method . For the purpose of 
integrally , we use Theorem 1 .  1 . The procedure involved is 
essentiaIly the same as for linearly constrained problems , except 
for that piecewise linear approximations which must be 
constructed for the constraint functions as well as for the 
objective function . 
Thus every non-linear function appearing in the problem must be 
separable, in the sense defined in article 1.  Let 
formulation of the convex separable program is: 

the general 

where the functions f j  are concave , the functions g~ , i = 1 , ... , u 
, all j , are convex . the functions gu i = v +I ,. . . , in , all j , are 
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concave ; and the ag and bi are real numbers. It is not necessary 
to fonnulate the problem in terms of non-negative variables . 

2.1 The Algorithm 
To solve the problem (2.1) , we begin by fonning an 
approximating problem ( the same procedure as in a article 1) 
.For each j , j = 1 ,. . . ,n, let - x and Gj be a lower and upper bound 
011 the value of xi , and choose a set of rj + 1 integer break points 
Xjk , k = 0 , 1 ,... , rj ,satisfying 

For each of these values compute the ordinates 

and 

,. 
The ordinates Gk and gdk define piecewise linear functions f j  (X j ) 
and kij (xj) that can be taken as approximations to the original 
functions f-', and gg . 
Let a new set of variables h jo , h jl , . .. , h jl be defined for 
each x j  , j  = 1 ,..., n. 
Then, making substitutions of the form (1.9) through (1. 1 1 )  for 
each variable xj , including a substitution 
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for each of the constraint functions g.. u , i =I,  ... , m , we get 
the following approximating problem in the variables hjk 

and h j k > O , V j a n d k  

and subject to the following restrictions for each j , j = 1 ,. . . , n 
(i) At most two of the hjk can be positive, and 
(ii) If two are positive , they must be adjacent . 
The values of the variables xj associated with any particular 
solution h are given by 

r; 
J 

x j  = C hjkxjk , j = l,...,n 
k=O 

(2.5) 
and hence it must be integer if xjk are integers ( theorem 1.1) . 
Observing that the approximating problem (2.4) is identical to 
the problem 

n ,  
Max Z =  zf j (Xj)  

j=1 

s.t. &j, (xj)P bi , i = ~ . . , m ,  
j=l 

- 
and -J -  x . < x .  J <x.  - J , j = I,..., n 
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which is itself an approximation to the original problem (2. 1). 
assuming that the lower and upper bounds zi and KJ are in the 
feasible region. 

3. Examples 
To prove theorem 1 . 1 .  and applylng the previous algorithm , we 
have to introduce the following two examples. The first example 
with x , k  all integers while the second one with x,r are not all 
integers, for the same problem . 

h7xaamapZo 
3.1. Max Z = ( xl- 1 )'+(x2- 1)' 

Subject to x l+2x2<5  
X l  ,X2> 0 

Solee :- 
fdx1) = (XI-I)~ , f 2@2) = ( ~ 2 -  1 l2 

Break Points o f f  l(x1) I Break Points off 2(~2) 

Max Z = hlo + h12 + 4hI3 + 9h14 + 16 h15 + hZo + hZ2 
Subject to 

A l l  +2 ht2 +3 hI3 +4 h14 +5 hl5 +2 h2] +4 5 5,  
l l 0  + l + A12 + h13 + h14+ A15 = 1, 
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h20+h21+h22 = 1, 
h j k  10 for all j and k 

Min z = - hlo - h12 - 4 h13- 9 hI4 - 16 h15 - h20- h22 

The previous example becomes 
All +2 hI2 +3 h13 +4 hI4 +5 h15 +2 hZ1 +4 A22 +h' = 5, 
hl0 + A1 1 + A12 A13 + h14+ A15 +y1 = 1, 

1 2 0  + h21 + h27 + Y Z  = 1 7  

- hlo - h12 - 4 All- 9 hI4 - 16 h15 - h2"- h22 + (-2) = 0, 
- - hl 1 - hI2- hI3 - hI4 - h15- h20-h21- h22 + (-W) = -2 

Where h' slack variable and yl, y2 artificial variables and 

since min w = 0 
Then we reach to the optimal solution of w ( i.e. the end of phase 
1 and begin phase 2 

Phase 2 
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since all elements in the row -Z either zero or positive then this is 
the optimal solution . (i.e.) , 
hIo= hl =Al2 = h13 =hI4=0 .  IS = 1, 
A,20= 1 ,  h21 = =O I > Z'= -17 
h '+z=  17 
3.2. Max Z = ( X ~ - ~ ) ~ + ( X ~ - I ) ~  

Subject to xl+2 x2 < 5 
Xl , X 2  > 0 

fi (XI )=( X ,  - I ) ~  ? 

Break Points of fl(xl ) 
( x 2 ) = ( x 2 -  I ) ~  

Break Points of f2 (x2 ) 

1 4 9 Min Z' =-hl, -;ihll - ah l3  -Al4  -4h15 -9hi6 --A,, 4 - 16A18 
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The previous example becomes 

Where h' is a slack variable and yl , y2 are artificial variables and 
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