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ABSTRACT 

An improved model of modal parameters of glass reinforced 
plastic structures (GRP) is presented. The  extensive analysis of 
:he fitted experimental results proves that the quasi uniform mass 
damping is the main feature of vibratory G R P  structures.  
Consistent with the analysis it is stated that the number  of 
boi~ndary degrees of freedom, code number, volume fraction and 
typical order of natural mode have significant effects respectively 
on controlling the type of each set of quasi rectangular hyperbolic 
relations associated with the vibration damping  of G R P  
structures. 

The close agreement between the numerical results of-' the finite 
element model and the fitted experimental results shows  the 
efficiency and applicability of the present modelling techniques, 
result ing in s i g n i f i c a n t  s imp l i f i ca t ions  in so lu t ions  o f  
idiosyncratic composite systems with lowest residual errors. 

1. INTRODUCTION : 

Model updating h a s  been a subject of study in literature for 
many years [ I ,  21. Most of the procedures try to minimize the 
deviation between the analytical and experimental models by 
adjusting the analytical and experimental model on the basis of 
experimental measurements. T h e  development 'of  mathematical 
models has required best memory to be more accurate and has 
high computational speed which plays an important role i n 
vibration analysis of composite complex structures in the recent 
decades. 
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At the present time, it is still difficult to  determine accurately 
the model characteristics of composite structures particularly the 
damping capacity by an analytical approach. T h e  experimental 
confirmation prediction is  therefore at very least desirable and 
can be used to build up  the mathematical model. This in turn 
leads to  more clearly understand the effect of parameters for  
controlling the dynamic nature of composite complex structure. 

In the present work, an attempt has been made to  build up an 
efficient simulation of modal parameters with an improvement of 
convergence characteristics of modelling process within a wide 
range of frequencies for different stacking sequences at  two levels 
o f v o l u m e  fract ion t a k i n g  into account  the  in f luences  of 
constraints subjected to the composite structural beams. 

For the sake of minimization the residual errors and raising the 
confidence levels for building up the model, weight factors (a ,  a) 
have  been introduced fo r  correla t ing a n d  updat ing  the 
construction of the mathematical model to the experimental data 
through the utilization of the curve fitting response functions [ 3 ] .  

This  has resulted generalized quasi rectangular hyperbolic 
relationships between the loss factors and the natural frequencies 
for various degrees of constraints within the confidence level 
99.2 % at least. Th i s  in turn permits the uncoupling of 
simultaneous equations of motion of composite structures of  large 
number of degrees of freedom with the lowest residual errors. 

In that way the curvilinear fitting techniques are  reutilized to 
generate other quasi hyperbolic relationships concerned with t h e  
loss factors in various set of natural modes with confidence level 
98.6 % at least. 

Other object of the present work is to analyze quantitatively 
the influences of the degree of constraints, to be considered, on 
the nature of modal parameters of composite structures. 

In the experimental work, Fig. ( Ib) ,  four types of boundary 
conditions have been subjected to  composite beams made from 
glass reinforced plastic GRP. Various specimens made from three 
plies (L X b X t) Fig. ( l a ) ,  are tested for two levels of volume 
fraction (a )  a weakly composite 15 % and (b)  an average 
composite 45 5% in each type of constraints. 

Experimentally the first four natural frequencies and  the 
corresponding loss factors are listed in the third and fourth 
co lumns  in tables 1 to  8 ,  respectively. For  the sake  of 
verification with the experimental measurements the first four 
natural frequencies at two levels of volume I'rnction are computed 
by the use of the modified f'ormula MFM [ 3 ]  and listed in the 
second column of these tables. 

To high light the nature of the damping parameters, hmi ly  of' 
curves representing mutual relationships of modal parameters are 
plotted in Figs. (2 & 3) in terms of the results listed in Tables ( 1  
to 8) .  



The c lose  agreement  of t he  resul ts  of the  proposed  
mathematical and experimental  models proves the efficient 
appl icabi l i ty  of  the  proposed  model  a n d  en r i ches  the  
understanding of dynamic nature of vibrating damping composite 
structures. This in turn leads to uncoupling the dynamic equations 
of motion particularly of large complex composite structures with 
minimum time of computation and residual errors. 

2. MATHEMATICAL MODEL OF VIBRATION DAMPING OF 
COMPOSITE STRUCTURAL BEAM 

In the last decade, i t  was mentioned in Ref. 151 that the 
hyperbolic relations between q and  w of composi te  plates, 
vibrating at  the first mode and subjected t o  different boundary 
conditions, provide a more reliable prediction throughout the utili- 
zation of  the uniform mass damping model. T h e  developed 
mathematical model was established by the utilization of the 
student distribution approximation with confidence level at 95%. 

T o  improve the convergence characteristics of the mathematical 
model within a wide range of frequency spectrum a t  various code 
numbers, modified quasi hyperbolic relations are developed by 
introducing the proper weight factors ( a ,  a),  131 throughout 
utilization of the least square technique. 

In the present work a generalized vibratory damped model 
made  f rom glass  reinforced plastic is  developed.  T h e  
interrelations between the loss factors and the natural frequencies 
from one side and the order of natural modes from the other side 
are obtained by applying the fitting response function on the 
experimental results of composite structural beam specimens. The 
models are subjected to different types of boundary conditions, 
for various stacking sequences, and for  two levels of volume 
fraction. As stated in [3] the quasi  rectangular hyperbolic 
relations between loss factors q and natural frequencies w are 
recast as 

In  addition the same relations between loss factor q and order of 
natural modes (i) is deduced by the same technique and the form 

where n=the number of natural f rec l~~encies  in the selected 
frequency spectrum. 

With t h e  help of' logarithm f'ornis ~ h e s e  relations can be 
transferred to linear forms here as. 



1 , ~ i  + pi 1, (i) =1, Bi for i = 1, 2, ... r 

The advantages of logarithm form is mainly for facilitation the 
quantitative analysis and the applications of extrapolation and 
interpolation techniques for  controlling the loss factors and 
frequencies at  the selected boundary conditions within the 
required frequency spectrum. 

For the sake of verification of the measured natural frequencies 
at  var ious  states,  the  first four  natural f requencies  were  
numerically computed by the modified developed formula [4] and 
the form 

where D'lc = the condensed bending st iffness modulus of - 

composite structural beam, 
pc = the equivalent specific mass of composite beam [3] 

3. EXPERIMENTAL MODEL OF VIBRATION DMPLNG 
COMPOSITE STRUCTURAL BEAM 

3.1. Experimental specimens : 

The frequency response tests were performed on four types of 
fixation on composite beams made from three layers glass fiber 
reinforced plastic GRP of various orientations at  the first four 
modes and at  two level of volume fractions. A typical specimens 
GRP composite beam of dimension (210 x 2 0  x 3 mm) made of 
three plies with 1 mm thickness for each ply for Vf 15 % and V 
4 5  % is shown in Fig. (1 a). To study the effects of degree o f 
constraint, lamina orientations and stacking sequences on the 
modal parameters, six code numbers of specimens were fabricated 
by hand lay up technique and stated as (OIOIO), (0130/0), (0/45/0), 
(0/90/0), (451-4510) and (4510145) for the two volume fraction 15 
% and 45%. 

3.2. Instrumentation Layout : 
The experimental apparatus is shown in Fig. ( 1  b). The  four 

boundary conditions of' the six specimens stated as  fixed-free 
(3D), hinged - hinged (4D), fixed-hinged (5D), and f ixed-fixed 
(6D) could be maintained by the clamping fixture. 

The specimens are excited by impact hammer to determine the 
resonance frequency [61. The excitation signal is fed to the dual 
channel analyzer through conditioning amplifier and a light 
weight accelerometer. 

Signal analysis is carried out by the analyzer linked to a 
computer with structure measurement system as shown in Fig. 
( I  b). The analyzer having a frequency range of 25 K H z  can zoom 
in various selected frequency ranges. 



The damping parameters for each specimen are calculated by 
using the peak method within the selected frequency spectrum. 

4. RESULTS AND DISCUSSIONS : 

Refer to [ 3 ]  the least square technique is utilized and the quasi 
rectangular hyperbolic curve fitting is plotted for the measured 
values (qi,  u i )  within the ranged of confidence level 98% to 99.99Vo 

as shown in Figs. (2, 3,). 

To study the effects of the number of boundary degrees of 
freedom stated as 3D, 4D, 5D and 6D on the damping capacity of 
the samples, Fig. (2) indicates that the damping capacities increase 
and the natural frequencies decrease in monotonically manner with 
increasing degrees of freedoms. 

Without loss the generality the quasi hyperbolic interrelations of 
damped natural frequencies cod and d a m  pi  n g capacities are 
permanently valied for the four cases of boundary conditions 
subjected to the six specimen lamina orientations for the first four 
modes, and for the two volume of fractions Vf as depicted in Figs. 
(2 and 3) and the form 

IIi = a ( ~ ~ ) - ~  for i = 1, 2, 3, 4 ( b a  > 0, a > 0) ................ 

With the help of the least square technique concerned with the 
curve fitting response functions, the generalized quasi hyperbolic 
quantitative relations between damping capacities ( q a v . )  and 

frequencies ( w a v e )  for the various types of fixation at the two 

volume fraction are correlated with confidence level 98.4%, at least, 
as listed in Table (9) and plotted in Figs. (4a and 4b). 

To facilitate the quantitative analysis of the weight factors ( a ,  a) 
for updating the mathematical model logarithmic forms of the quasi- 
hyperbolic relations ( - ) for various orientations and for 

different types of fixation for all specimens are plotted in linear 
forms as represented in Figs. ( 5  & 6) and (7 & 8). It is noticed that 
the slopes assigned by the weight factor ( a )  are mainly depending on 
the degree of isotropical state while the damping constant (a) 
depends mainly on the flexibility of the specimens. 

From the computational and experimental values depicted in  the 
previous tables and figures i t  is shown that the weight f. '~ctors 
increase as the volume fraction increases and as the lamina 
orientation leading to a low stiff composite structural beams as 
expected. 

Also i t  is shown that boundary conditions (types of fixation) have 
signif3cant effects on the damping parameters associated with the 
weight I'ac~ors (a ,  a) compared either with the influences 01' lamina 



orientations or with the volume fraction Vf. As an example the 

damping constant in the fixed free state is increased by about 24 
times of the correspondant in the fixed fixed state as shown in 
Table (9). 

Table ( 9 )  : Ccncralixcd forms of interrelations between damping capiicitics, q a n d  natural 
frcclucncics, w for various fixations of LCB at ~ w o  levls  01' fibcr vo lume fractions. 
V,. = 15 9h and 4 5  '%. (Ref. Tables  1 to 4 for VI. = 15 '% and Tables  5 r o  8 I'ol 
V,=45%.). 

Fiber volume fraction, Vf 

11, = 3 1.37564 1 (toi)-" 7""7307X' 

Cosl~l' icscc lcvcl = 9 x 7 s  1 

In view of the experimental measurements listed in Tables 1 to 8 
it is obvious that the loss factors are monotonically decrease in 
hyperbolic feature as the mode number increases. 

For quantitative estimation of these relations, the curve fitting 
response techniques is utilized and the form 

It  is of interesting to note that 
the loss factors decrease by the same rate by a b o ~ ~ t  1.4 for all cases 
while the damping constants B; are strongly affected by the volume 
fraction. 

By visual inspection of the measured values of loss factors and 
the corresponding hyperbolic fitting relations in Tables 1 to 8 i t  is 
noticed that the damping constant B is nearly e q ~ ~ a l  to the loss 
factor of' the first natural mode. This remark exists for all types of 
fixations and for various code number such that one can suggest that 
the loss factor at any number of mode can be related to the 
correspond 1st mode in the following empiricaI serial form. 

= ( i  = 2,3 .... n ............................................................ (8) 

The col-respond logarithmic form is then given by 

Inqi + 1.4 Ill i =  l n q l  ................................................... (9) 

and as shown in Fig. (9). 



Figs. (10) and (1 1) show the quasilinear relations between the 
number  of  degrees of  boundary freedom and  the equivalent 
damping loss factor for the two levels of volume fractions. 

It is worth to mention here that the use of logarithmic form is 
not only,  fo r  facilitation the quanti tat ive analysis and  for  
computing the loss factors either in terms of  the  natural 
frequency o r  in terms of the mode number by extrapolation or  
interpolation techniques, bu t  also for  control the magnitudes of 
natural frequencies and damping capacity by proper choice of 
boundary conditions and types of fixations in the selected range 
of the frequency spectrum. As  an example from the results listed 
in Tables (1 and 4) it is noticed that the third natural frequency at 
(013010) orientation of the fixed-fixed beam is nearly equal to the 
fourth natural frequency at (013010) of the fixed free for Vf 15%. 

Similarly the fourth natural frequency at (01010) orientation of the 
fixed free beam is nearly equal to the third natural frequency 
(01010) at fixed fixed for volume Vf 15%. Also for Vf = 45%, at 

fixed free it is obvious that the third natural frequency at (013010) 
is nearly equal to the second natural frequency at the fixed fixed 
beam and the damping capacities are almost the same. 

By the inspection of experimental results listed in Tables (1 to 
8) it is evident that the changes of outer orientations have 
permenant significant effects on the damping capacity,  and 
stiffness, of the specimens compared with the changes of the 
inner orientation regardless to the degrees of constraint and of 
the degrees of isotropism at different mode shapes as  stated in 
I 7 1  

For the sake of verification of measurements of frequencies 
listed in column three, the modified formula M F M  is utilized to 
compute the first four undamped natural frequencies and listed in 
the second column of Tables 1 to 8. The comparison between the 
numerical results and experimental measurements shows the good 
agreement and the efficiency of the modified M F M  to be utilized 
for computing the natural frequencies of composite structures 
with a wide range of frequencies and at  different degrees of 
fixations. 

5. CONCLUSION : 

The  present work is focused on the development of a 
generalized model of vibratory damped glass reinforced plastic 
(GRP)  s t ructures .  T h e  analysis  of  the  fi t ted resul ts  of  
measurements indicates the following conclusion remarks. 

1 .  Without loss the generality the quasi uniform mass damping is 
the main feature of damping behavior of' G R P  structures in 
various states. 

2. The fdmilies of quasi rectangular hyperbolic relations between 
the damping loss factors and natural frequencies are stated by 
the lowest residual errors by using the mathen~at ical  fitting 



convenience of the two weight factors a and a. 

3. The  properties of each family relating loss factors and resonant 
f requencies  a r e  controlled mainly b y  the fo l lowing  four  
parameters : 
* number of boundary degrees of freedom, 
* volume fraction, 
* lamina orientations and stacking sequences and 
:': typical order of natural mode. 
In contrast to the limited variations of the weight factor (a) ,  the 
damping constant (a) is strongly affected by the type of fixation 
compared with the other controlling parameters as  shown in the 
curves of figures. 

4. T o  disregard the influences of controlling parameters, the 
logarithmic trend of the uniform mass damping behavior of GRP 
is characterized by the linear decreasing of loss factors and by 
nearly constant rate (a)  against the monotonic increasing ot' order 
of the natural modes. 

W e  would like to  express our thanks to Mr.  M. Ferra for 
assistance in preparing the specimens. 
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NOMENCLATURE : 
Vf Volume fraction GRP Glass reinforced plastic 
I Mode number D The degree of constraint 
a, a, R .  weight f'actor-~3 11 Damping loss I'actos 

q,,,. Average damping capacities wav. Average nat~iral 

frequencies 



Tnbts (1) : 7hc nvmr icn l  and erpera~ncnlnl modal pnrnmetcrr otahe first tour 
m a l e s  of lk fixed-free GHP k s m  of Vulumc rrnetion 15 % Tnblc (3) :The numsricd and sxperimcnlol modal arnmeisn of the first four 

modes of the f i id -h ineed  GRP beam oFvo~ume t ~ a c t i m  I 5  % 

211.109 IS8.496 13.334 

1322.981 1194.336 4.370 

3704.384 3694.511 1.552 

4 7-9.1 15 729J.796 2.080 

q i  - 2.248738345 (u,)-0.,3nllw 

elmli&ncr kvrl  - W.4IU)l % 
oi  -0.124(19M229(i)-I.37>JJOS8 

925.742 918.733 12.756 

2999.959 2960.321 4.267 

6l59.172 6240.411 2.489 

4 10703.5% IMPI.2.0 2.020 

q i  - 22.1~)5812sa~u,)~~~~OJ~~*~ 
c o n A d c m  k r r l  - 99.01 % 
m i  - 0.12a)(MIO7 (Wl.MllU67W 
conkknsc krcl - 99.29 s 

Tsak 3.1 101 30 101 

918.879 910.324 13.6C.2 

2977.748 2960122 4.460 

6212.832 6207.430 2.580 

10624.298 106m9LI 2.087 

"i - ~a.40~87783 (u,)d.1PYIU7~ 
cmlidrncc kvs l  - 99.16 P 
n - 0.12776724w ( i ) - ' .18Jom 

samcncc k r d -  99.28 Ib 

Tab'. 3.3 10145 101 

916.213 910.732 14.291 

W . 8 6 8  299J310 4.762 

6181.951 6179.211 2624 

10578.336 I05W.902 2.220 

n - 28.628692~ ( w , ) ~ J ~ ~ " *  

c a f i k n c c  krcl - 98.86 9L 
"i - O.lM5336958 (0-1.3OYY71 
c a n d s m  k w l  - 99.84 9b 

q - P,,,. ,B%'l 1 ,, 

c a l i d c n a  kvrl  - 99.4, B 
nl -0,1477456184 (iph..#WtW 
M n d c n c ~  1sr.l- 91.69 s rn"fi&nsC Icrd -99.21 .i 

Table 1.2 1013Ll101 

209.5- lRl.354 13.898 

1313.186 IlU.071 4.546 

3676.951 3606.541; 2.614 

72U5.362 7200.530 2.W- 

sm - 1 . ~ 3 8 7 2 5 0 0 ( u , ) n . 1 ~ ~ , ~ 1 t ~ 3  

canfidcm k r r l  - 9Y.IRlO 5 
q l  -0.13086715W(i).l.l~lllWYI 

~ ~ l i d s n s ~  lcrt - 99.34 % 

c m l i d c m  Icrrl- 99.3578 5 
qi - O . L 4 L L I 4 I Y 8 7 ( i p l l l ~ O l l J ~  

canlidencs k r r l  - W.IU S 

Table (2) : Thc nvmcticel md cxpcrinxnlol mcxlnl pnrnmctcm u f  the l i n t  Cour 
modes ofthc hingd-hmgcd CRP benm o f  volums fraction 15 % 

Table (4) :The numetical and cxpetimcntal model  -sten o f  the firs, f a u  
modu of lhc fixed-rncd GRP b u m  o f  volums fraction I S  % 

91 - 14.301S158(01)9.7~3~6t726, 
confidence k w l  - 99.118 8 
11 -0.IJI945WY (i)-I.11611996 

cmr*nce k r r ~  - 98.88 9b 

T."" 2.J 145 1 4 s  101 

9 %i I,% 
(0  

I 480.840 470.232 19.634 

2 1923.358 1920.272 6.ml 

3 4327359 4310.431 3.456 

4 7691.433 7686,245 2.613 

-1 - 1 6 S 3 9 5 l ~ l  Cw,)a,.r~wanr. 
conn*elue Isvel- 99.47 % 

91 -0.1114092591S (1).1177ilU3114 

conlidcncs Isvd - 99..7 Ib 

Tabk 2.6 [4510145] 

347.272 340.234 22.732 

1389.059 1179.921 7.602 

3125.393 3120.781 4.214 

5516.2JI 554% 'L5O 3.U") 

I!' - 17 67582368 (uI,).~.~M,IIIII 
r..l%,ldmcr Irrd - "Y.Y6 ?. 
.I ,  -II.22"XIswI ,i)-1..7S<,lllll 

G~WIIJEIWC CICI - W.WI li 

q i  - 10.78741662 ( w t ~ . ~ s 2 e . , & s >  
rnnT,&ncs k r r l  - 59.32 B 
qi -0 .1189M5Y2( Iy1~~8ZJ03JZ 

ili - 63a979558 (u,)-o.w~~u 
-ndem k r r l  - 98.- % 
11 - O.I2,8W1388 (ipIJ77SnSl9 

anlidmce krcl  - 99.23 % 



,, Tzblc (5) : The ~wmericirl mnd ~ x ~ ~ r i ~ x w ~ ~ i d  wUJal ~,iwimwtrs LIT the first tour 
wulcr  or the fixd-frce G I W  t=nm o t  wlums fraction 45 % 

Table (7) : Thc numerical and ~ ~ ~ x ~ i m r n t ; l  modal i&r.mw<r\ o i  lk lirrl I;,-$ 
n,odcr ofthe fixed-1,inged GKP h a m  ofvolumc Irairwn 45 '% . 

Tulrlc 5.1 [I1115 101 

l l w r ~ u  #I,a cull 111% 
( 3 )  

I 294.Y26 ZX1.741 b L . 1 1 2  

2 I Y 4 l . Z t i l  IHl.'>.X23 4.231 

3 5l75.234 4'151.IW 2.318 

4 10141.394 IW15.397 I h ( , l  

18 - 2.4UOXSSIVI (W,)*-,J'*~W*Y*~ 

cun8idcwe Icrcl - W.9872 1 
I, -".,I"3,73123 , i 1 - ' . ' * 2 " ~ ~ ~ ~ '  

Nlll iJencc I r rc l -  W.97 .b 

y - F,~"Yc"~.  I."" 1 "5C) 

W,,i - ,>","W" ,.rc "emy,l".*, .eCJ 
I, - Dunlp'". 1%) 

Tl~c numerical nnd e~perimcac:d n,oJdI panr8nctrs oC lhc first rou8 
mulcr u t  lhs 18ingcrl4ngcd G1W bcmn o t  rvlurnc I'ructiun 45 .XI 

Thc numcricd and cxpcrimmul m d a l  parnrncln of lk first 
rnulcr of lhe f i iul- l ixed GKP Lrml of volume h c u a n  45 ?b 



' *- L-I t = 3 ~ n m  

Fig. (I  a) : 3-layer beam model. 

I .  Bcam modcls 
2. Impacl Iiamtncl. with built-in I'orcc 

transducer. 
3. I 'ie~oclcc~ric-;~cccIero~i~c~cr. 
4. Cliwgc amplil'icr. 
5. Conditioning amplifier. 
6. Dual-cha~nncl signal analyzer. 
7. Conlp~ltcr .  
8. Printer. 

(Fig. I b) : Sche~naric block diagram of the measuring circui~. 
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Fig. (2) : Quasihyperbolic relationship relating damping capacities q i  with natural 
l'rcqucncics, a, f'or LBC of various orientations for different typcs of 
fixations at Vt. = 15 %. 



Ref. Tables 5.1 to 5.6 Ref. Tables 6.1 to 6.6 
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Ref. Tables 7.1 to 7.6 Ref. Tables 8.1 to 8.6 

Fig. (3) : Qi~asiliypcrbolic relationship relating damping capacities q i  with natural 

~rcquencics, wi for LBC of various orientations for different types of 
liisn~ions at V,. = 45 7%. 



Fig. (4a) : Generalized quasihyperbolic relations between damping 
capacities, qa, and natural frequencies o,, for various 

o - 

types of fixations at Vf = 15 5%. 

I I I I a,, (rad I sec) 

0 I I I I I I I a,, (rad I sec) 
0 2200 4400 6600 8800 11000 13200 15400 

0 2200 4400 6600 8800 1 I000 

Fig. (4b) : Generalized quasihyperbolic relations between damping 
capacities, qav and natural frequencies w,, for various 
types of fixations at Vf = 45 %. 



1 . 5 4  , 
I I I I I I n s ,  (rud (scc) 
5 6 7 8 9 1 0  

Ild'. Tables 1.1 to 1.6 Ref. Tables 2.1 LO 2.6 
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lief. Tables 3.1 to 3.6 Ref. Tables 4.1 to 4.6 

Fig. ( 5 )  : Logarithmic iorlns reIating damping capacities, qi with natural frequencies, 

mi for LC13 of various orientations for different types of fixations at Vf = 
15 5%. 



Ref. Tables 5.1 to 5.6 Ref. Tables G.1 to 6.6 

lS 4 I I I I In mi (radlrec) '5 1 I I I I I I I ln mi (rad I SE)  
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Ref. Tables 7.1 to 7.6 Ref. Tables 8.1 to 8.6 

Fig. (6) : Logarithmic forms relating damping capacities, qi with natural frequencies. 
m i  for LCB of various orientations for different types of fixations at Vf = 
45 %. 



Fig. (7) : Generalized logarthmic quasilinear forms relating 
damping capacities, q; with natural frequencies mi for 
various types fixations at Vf = 15 5% (ref. Table 9). 

1.5 -/ I I I I I In o,,; (rad / sec) 
5 G 7 8 9 10 

Fig. (8) : Generalized logarithmic quasilinear forms relating 
damping capacities, 11 with natural frequencies wi for 
various types of fixations at Vf = 45 % (ref. Table 9). 



Fig. (9) : Logarithmic representation 01' dmping 
loss [actors in various natural modes. 

r ~ I I . I *  

3D 4D 5 D 6D 

no of degrees of freedom 

Fig. ( 1 0 )  : Equivalent damping capacity u\ VG Ihr 
cc1 

various degree of constraint (D) at VI- = 
45%. 

Fig. ( 1  1 )  : Equivalent dumping capacity IJ,,, % l i ~ r  

thc degl-ce of' constl-ainl (D)  at V,. = 

15%. 




