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THE APPLICATION OF MATHEMATICAL PROGRAMMING

IN_THE DESIGN OF AXIALLY LOADED MEMBERS (1)

BY

DR. SOAD MOHAMED SERAG

ABSTRACT;

This paper outlines the-.application of mathematical
programming in the optimum deésign of machine elements.
We adopt the technique of deometric programming in this
study for the design of axially -loadded members subjected
toe structural constraints with various degrees of complex-
ity. A following paper will include a.comparative study
between the proposed design procedure and the traditional
optimal design procedures.

1- INTRODUCTION:

The optimal design of machineé member. has always been
of great interest. As the machine member constitute
& structural compenent in the integrated design, the design
paramaters are normally subjected to limitations or struc-
tural constraints, the design ciiterion, on the other hand
strongly depeﬁd on the application.

Thus, the optimal design problem could finally be for-
mulated as a mathematical programme with an objective func-
tion subject to constraints.

The difficulty of application of this concept emenates
from the fact that both the objective function and/or the
contraints are nonlinear in nature. The size of real design
problem-with the above mentioned non-linearity- feature was-
in many cases-challenging.
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However the technique of geometric programming in
the last decade offered an efficient tool to deal with
many engineering problems. It is remerkable, that the
application of this technigue in the field of machine
design is still in its preleminary stages.

This paper (I) investigates the application of geom-
etric programming in the design of axially loaded mem-
bers. A following paper (I1} will report a comparative
study with the traditional optimal design procedures and
the efficiency of computational algorithm.

2- TENSILE BARS WITH STATIC AXIAL LOADS:

The design problem in Fig. (1) depict the structural
contraint of an axially loaded machine member, the length

is restricted by

4L L o< L erereeena (D)

L
max

min
and the diameter is restricted by

d < 4 PR &1

the weight of the machine elements is
- 2
W = wi{IlI d°/4) - L csensaesaas(3)

w = is the density.
The cost of the part C is estimated to be

c =‘;c°i By I Py
Y

Co,a,b is known manufucturing constant, i the number of
cost attributes inherent in the total manufucturing cost.

The allowable strength Trax is given by
Tmax <  sys2n T 3!
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Sy = published tensile strength
N = Factor of safety

Since
max = (%) F/(T%z-) vesesssecaiB)

The optimal design problem, for minimum cost criterion
may be cited as:-

Minimize

C-‘_ﬁ coi &} L 1 sy{i cesscannas(4)
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subject to
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Consider the case of i=2
The dual problem is

Maximize
syr2 (cob,woi Cll,wll C21 w2l C31,wil Cd4l wdl
dw=TT Qe RID T G Gt G 1Y

Subject to:~-

wol + wol2 = ]
a(lwol +Bl wo2 - 2wll + w2l =0 wesviaseins(ll)
X2wol +B2 wol +wil-wdl = 0

wol, wll, w2l, w3l, w4ldD

3- TENSILE BARS WITH VARYING AXIAL LOADS:

The design of coupling study with repeated energy load-

ing is considered

3~1 Simple case

For thé simple case the subsidery design equations are:-

(F_,.) L

FA . max
{1 2/4)E .-oo---o.o(lZ}
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%ax = (!I 35;4) . wowessussn(l3)
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E = youngs Modulous
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A = Maximum axial Elongation

Se= Patique strength.

By adding the structural limitation and the same objective

criterion, our primal problem is:-

win g = 225 coi i Pl ceeeeeadee(15)
1=1 -
subject to:-
F v .' o,
(B L d 22
2 F {1+ se/sy) N
max -2
{ s d <1 S & 1))
+ a Z 1
max
Ll L =1
max ¥
L L1 =1
min -
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Let i=2, (g} = Cll, e c21,
1 1
= C31 , =C4) , L_. = C51
dmax Lmax min
Our dual problem is this:-
2 Coi.woi,Cll wll,C21l w21l ,C31 w3l C41l w4l CS51 w51
max. TGt GartGar) et G G5!
.0---.-..-(17)
Subject to:-
wol + wo2 = ]
o wol + Bl wo2 -2 wil -2 w2l + wol =0  ......(18)
+ wil -w5l1l = o

9(2 wol + B2 + wll



3-2 THE COMPLEYX CASE:-

In the complex case depicted in Fig. (3}, for a study
The total absorbed energy (P.E) is given by

2 (F } Ll 2(F ) L2
(P.E) =(P.E)1+(P.B}2= ’;a" + “‘a"z

T dl E i dzE

- 2 IFmax) (Ll N LZ)
. IT E dlz d22

.-+ (19)

Eqguation {19) Constitute the primary design equation;
The subsidery design equations will be based on significant

stress
tﬁh) max = KA Pmax'
: (11 4)
2
F
(65) max = KB ———Eég-—— rsneva-eal(20}
(T1 dlf4j
F
(6h) max = Kr __“Eﬂﬁi__
(IT dr™/4)

Where A,B,r designate shoulder and fillet regions shown in
Fig. {(3). ,

One of three equation in {(20) will dominate the other .two.
Limit equationg of the problem are:-

6

= Principle stress

1
- 2 se
(61) max =1+ sc/sy)
dl & 4l max ceesawanes{21)
d2 < 42 max
LT (Min)=2LT = L1+L2 # L (max)

It is natural to assume that r (max) dominate as it is
always possible to select rl,r2 to satisfy this condition,

"
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substituting we get

11 (6‘)2 max d‘
(P.E} = r 4 L1 , b2
8 B Kr a12 az2
Let 6: aslmax then

2 4 }
Sc ar Ll L2
(B.E) = T1/2{ ) [ + 2
(1+p) 2 82 Ke? a12 az?

..........(22}

The optimal design problem can be cited as follows:~

Max. P.E vavasesnss{23)

Subject to:-

a1 £ a1

=
dz = dzmax

..s-.-.-..(z‘)

LI + L2 LT

ﬁé max
Ll + L2 = Bt
d - ‘ - -
}E coi a1 Yig22i PM PR L ... (29

Equation (25} is the "design" cost constraint
Some difficulties are faced in this design problem.
the factor Kr which depend on dr This can be overcomed hv

Firstly

assuming
Kr = Ks (dl’}os o.-:;--.-t(zsi

Also it is feasible to assume that:-

dr
a-i.- é As ----.....-(27)
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Where Ks,Qs,As depend on the particular theading system.

The Problem thus will be:-

o se _ Ll L2

Max = 2EN (1+se/sy) g (4-20s) a * d2}

r .1 2 -

Subject:- N
a1 £ a1, .
d2 < d2 ’

= max
<
Li+L2 = LTmax
=
LI+L2 = LT ;.
1 ara”! o~
> — .1
AS
a( N ‘\( . . -
Zoi S g3, picg, P < ¢
1 ————
4~ SQOLUTION:

The above models are solved by mathematical programﬁing
techniques, for various examples on computers. The compartive
study will be reported and discussed in following paper (11).
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APPENDIX

Geometric programming (G.P.) is a relatively new topic
developed for solving algebric non-linear programming -
problems subject to non linear constraints. In mathematical
programming, two problems can he constructed, one is called
the primal and a corresponding one called the dual.

The G.P technigue relies heavily on the dual.

We state the generalized (G.P) Problem.

P N
Minimize yo(x} = Z hot cot wpr ®n  aotn
t=1 n=1 A

Subject to:-

T

ym{x}) = ©  hmt cmt ?r " xn aotn

=l h=1
m= 1,2,..e, M {A2}

hot, hmt = + 1, cot, cmt 2 0
amtn, aotn urestricted in sign

tem = No. of terms in the m th constraint
toc = No. of terms in the objective.function

For the case when all hmt, hot = +1, we have a posynom~
ial G.P problem. oL

The primal Problem is

T
Minimize yo(x) = J° cot ¥T xn20tP (A3}
t=1
n=1
Subject to
N
¥m (X)w iﬁ cot J7 xn aotn
=} n=1
cot,cmt > ©
The dual problem is
M T /C .- wmo
Maximize d(w) = IT TI (1 T M (a3)
m=0 t=1
Subject to
wot =1
t=1
amtn wmt = o n=},2,. N (A6)

m=1 t=]



(]

Tm
Wmo = ) Wmt m=l,..easM (A7}
t=1
Provided that we define woo =1
T = Tm {AB)
m=0

From the.duality theorem if X* is the optimal primal
solution and W* is the optimal dual solution then

a (wyr = (X)* (A9)
Hence for the terms is the objective function the foll-
owing relationship at optimality holds:-

aoctm
xn
t=l,...,TC

Wot (yo (X)*) = cot {Al0)

\J
' n=1
At last we like to mention that for the ith term of the
mth consraint the following relation-ship holds:-

‘ wmt amtn
5 = Cmt %xn {All}

.mt z:wmt

ﬁz

Where wmt is the generalized weight for the t th term in the

mth constraint.
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Fig (1) Tensile Bér with stdticd%idal tood
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