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ABSTRACT 

In this paper we introduce the concept of TP-rarefied spaces 
and investigate some of its dimensional properties. We prove that 
dim Y < dim X for any closed er-totally paracompact subspace Y 
of a TP-rarefied space X. Moreover, we study some defects of 
o-tgtdly paracompact spaces. 

INTRODUCTION 

This aim of this paper is to study the relation between the 

dimension of the spaces and the dimension of their quassi components. 

This connection is given in the works of A. Lekek [5] and T. Nishura 

[7] for separable metric spaces. We extend these results over the limit 

of rnetrizable spaces. 

BASIC DEFINITIONS AND NOTATIONS 

The space X is strongly paracompact if every open cover of the 

space X has a star-finite open refinement. The space X is completely 

paracompact [4,9] if for every open cover U of the space X there exists 

a sequence y l ,  y2, ... of star finite open covers of X such that the 
00 " vi contains a refinement of U. Thespace X is called union = 

0-totally paracompact (briefly 0-t.p.) [6] if for every base Yl for 
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the space X there exists a o-locally finite open cover of X such 

that for each V E y one can find U E % such that V c U and 

Fr V c Fr U. Thesymbol Fr U denotes the boundary of a set U in X. 

Every o.t.p. space is paracompact and a completely paracompact 

space is o.t, paracompact. 

As usual by dim X and ind X we denote the covering dimension 

and the small inductive dimension respectively. N will denote the set of 

natural numbers. The local dimension loc dim X of a space X is 

defined as the least integer n such that there exists an open cover {Uh} 

of X with each dim [Q] 5 n , or if there is no such integer, loc dim = 

= 00. The symbol CIU denotes the closure of a set U in X and when 

the closure of U is taken with respect to any space Y we denote it 

by ClyU. Let fix + Y be a mapping, then dim f = sup(dim f : 

YE a. 
me family {Ha : a E A )  is called hereditarily conservative if 

C1 (U {L, : a E A]) = u(CI L, : a E A) for every family {La Ha : 
a E A).  The family t~ is Xo - conseruative if w = u {an : n E N) , 

where oo is hereditarily conservative and closed in X, (u(L : L E 

e a i ) ) n ( u  ( H : H E  mi)) = 0 for i + j  andforeverynz 1 the 

family on is hereditarily conservative and closed in X \ u(L : LE w 

w {ai : i 5 n - 1 ) }. The space X is called L-paracompact if every 

open cover of X has  conservative refinement. M.M. Coban [2,3] 

shows that Every L-paracompact space satisfies the condition: 
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(*) If Z is a closed subspace of the space X , then dim Z = 

= l w  dim Z. 

All spaces are considered to be normal unless stated otherwise. 

TP-RAREFIED SPACES 

Definition 2.1. A space X  is called TP-rarefied if for every 

nonempty closed subsgace Y c X there exists a nonempty open set U 

such that Cl U is a union of a countable number of closed G-totally 

paracompact subspaces. 

Theorem 2.2. If the space X  is TP-rarefied and satisfies the 

condition (*) , then dim X = sup(dim Y : Y is closed in X  and Y is 

o. t.p. space) 

Proof: Let n = sup{dim Y : Y is closed in X and Y is 0.t.p. 

space) and Z = u (U:U is open in X  and dim U < n J . It is clear that 

dim X  2 n. If Y c Z and Y is closed in X, then by the condition (*) 

we have dim Y = loc dim Y 5 loc dim Z 5 n. We shall prove that 

Z = X. Then dim X 2 n and the theorem is proved.Assume that Z # 

# X. Then the set X \ Z is closed and since X  is TP-rarefied, then 

there exists a nonempty open in X \ Z  set U such that C1 U is 

c-totally paracompact. The set Z  U U is open in X. Consider a point 

x ~ U a n d V i s  anopeninXsuchthat X E  V c Y = C l V c  Z U U .  

Then we have, 

1. Y \ Z c U and the set Y \ Z is closed in X and a-totally 

paracompact. 
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2. d i m ( Y \ Z ) s n ,  

3. If H c Y n Z and H is closed in Y, then H c Z and 

dim H = loc dim H 2 loc dim Z 2 n. 

By lemma 3.1.6 in [4] we have dim Y 5 dim (Y \ Z) + sup 

(dimH:HisclosedinY a n d H c Z )  <n. Then X E  V c Z a n d  this 

contradicts the assumption that x P Z. From the contradiction we see 

that Z =X and the theorem is proved. 

Corollary 2.3. If the space X is TP-rarefied and L- 

paracompact, then dim X = sup{dim Y : Y is closed in X and Y is 

a-t.p. space) 

Theorem 2.4. If for a 0-totally paracompact space X there 

exists an open base % such that dim Fr U n-1 for all U E % , then 

dim X < n. 

Proof: Let A and B be two disjoint closed sets in X. Let 

'XI = ( U E  ' X : A n C l U =  0 o r B n  C l U = 0 } .  Clearly is 

a base for the space X. Then there exist discrete open systems; 

r m = { ~ ~ : a ~ ~ m ) : r n ~ ~ } a n d { ~ ~ ~ ~ l : a ~ ~ , m ~ N  

in X such that 

1. r = U {rm : m E N) is open cover of the space X. 
m 2 . 4 ~ ~ ~  and F ~ U ~ C F ~ V ; .  

Let A', = { ~ E A ~ :  A ~ C I U ~ + O } ,  urn= u 
u [u: : C ( E  d m ]  and vm = u (u: : a ~  A,\ A',]. 
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By the construction we have CI Urn n CI V, = 0, Fr Urn = u 

~ ( F u :  : a ~ d , ) a n d ~ r ~ ,  = u { ~ r  U: : ~ E A , \ A , ] .  
Also dim Fr Urn < n-1 and dim Fr V, < n-1. Let 

Om= U,\U (CIVi: i<m),  H m = V m \ u  { C I U i : i < m ) ,  

G = u { G , : m e N )  , and H = u { %  : r n ~  N} 

Then A c G  , BcH and G n H =  0. Also X \ ( G U H )  c v 

u{FrG, vFrH, :ma N J .  Then dim(X\(GuH))$n-1. By 

Lemma 3.1.27 in [4] we have dim X 5 n. 

Corollary 2.4. If the space X is 0-totally paracompact, then 

dim X <  ind X. 

Corollary 2.5. If the space X is TP-rarefied and satpsfies the 

condition (*) , then dim X ind X. 

Corollary 2.6. If the space X is L-paracompact and TP- 

rarefied, then dim X < ind X. 

INDUCTIVE COMPACTNESS AND 
DEFECTS OF SPACES 

Inductive dimensions are introduced by a class of spaces and 

investigated in [ I  ,231. 
Let 3 - be a class of spaces. For any space X  we define, 

(1) !I?-IndX=-1 and$-indX=-1 i f X ~  3. 

(2) If n 2 0, then S I n d  X < n , if for every closed set F in X 

and an open set U in X such that U 3 F there exists an open set V in X 

suchtha tFcVc Uand S I n d  FrV I n-  1. 
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(3) If n 2 0, then %ind X < n, if for every point x in X and 

every neighbourhood 0, of the point x there exists a neighbourhood 

Vx of x such that Vx c 0, and S i n d  Fr V, c n-1. 

If K is the class of all compact spaces, then K-ind X = cmp X 

and K-Ind X = Cmp X are called the inductive compactness of the 

space X. 

Let dimg X = sup(dim F : F is closed subset of X and 

F E g) , and dimK X = sup (dim F: F is compact subset of X). 

By Lemma 3.1.27 in [4] we have . 

Corollary 3.1. For every space X we have dim X 5 S I n d  X+ 

+dimgX+ l ,anddimX$CmpX+dimKX+ 1. 

By proposition 2.4 we have. 

Corollary 3.2. If the space X satisfies one of the following: 

1. The space X is o -totally paracompact. 

2. The space X is TP-rarefied and L-paracompact. 

3. The space X is TP-rarefied and satisfies the condition (*) 

, then dim X s S i n d  X + dim9 X + 1 and dim X < Cmp X + 
+dimKX + 1 

Example 3.3. Let X be a metric space such that dim X = 

= n 2 2 and dim F = 0 for every compact subset F of the space X. 

In the space X x I, where I = [OJ] combine one point a with a set 



X x { 1 ) . The resulting space is denoted by 2. Let f : X x I + Z be 

a natural projection. If z E Z and z ;t a , then the neighbourhood O, 
of the point z in Z is as in the space X x I. If z = a, then the 

neighbourhood of a has the form 0, = f(X X (I-&, I]), E > 0. The 

space X is metrizable, linearly connected, n 5 dim Z 5 n+l and 

dimK Z=l . Thus dim 2- - dimK Z can be arbitrarily a large number 

even in the class of separable metric spaces. 

By Q(x,X) we denote a quasi component of a point x in the 

space X. There exists a continuous mapping qX : X -+ X I Q where 

qx(x)= Q(x, X). For every point x E X on X I Q we consider the 

topology generateed by a base (U c X/Q : the set qx-l(U) is open- 

closed in X). The nspace X I Q is called quasi component space and 

qx is the natural projection onto XI Q. 

By Co(X) we denote the family of all compactifications of the 

space X. Also C(x,X) is the connected component of a point x in the 

space X. If Y c X, then we define 

r dXY = sup {dim F:F c Y and F is closed in X) . 
Also for the space X we define the following defects, 

def X = inf {dim(C~\X) : CX E COG) } 

and Def X = inf {rdCX (CX \ X) : CX E Co(X) 1. 

The quasi dimension and quasi locally dimension of the space X 

are defined as follows; 
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Q dim X = sup (dim Q (x,X) : x E X) 
and 

Q loc dim X = sup ( lw dim Q (x,X) : x E X) 

Lemma 3.4. If the space X is locally compact, then loc dim XS 

< dimC X = sup(dim C(X,X) : x E x}. - 

Proof: Let x be a point of the space X and U be a 

neighbourhood of the point x such that F = C1 U is compact. Then 

dim F = Q dim F = dimC F < d% X. Then loc dim X 5 dimC X. 

Consider the following condition: 

(**) For the space X there exists bX E Co(X) such tthat 

Q(x,X) = X n Q(x,bX) for every x E X. 

Lemma 3.5. If the space X satisfies the condition (**) and 

Q(x, X) is locally compact for every x E X, then dim bX = 

= rdbx ( bX\X) + Q loc dimX. 

Proof: Let y E bX be any point, where bX is the 

compactification of the sapce X stated in the condition (**). If 

Q(y,bX) c bX \ X, then dim Q(y,bX) rdbX (bx \ X). Let us 

suppose that X n Q(y, bX) # IZI and y E X. The set Q (y,X) is 

locally compact and open in Q (y, bX). Then dim Q (y , bX) = 

= dim (Q(y, bX) \ Q (y, X)) + loc dim Q (y,X) 5 rdbX (bX \ X) + Q 

loc dim X. For the mapping qbX : bX + bX l Q we have dim 

qbX = Q dim bX and &m bX / Q = 0. Thus dim qbX = Q dim bX = 

= rdbX (bX \ X) + Q loc dim X. and the proof is complete. 
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In the following two theorems all considered spaces are compact. 

Theorem 3.6. If any compactification of a ~ . t . p .  space X is 

TP-rarefied and L-paracompact, then dim X 5 def X + Q dim X + 1 

Proof: Let bX be a compactification of the space X such 

that def X = dim (bX K). Let x E X be any point. Then dim Q 

(x, bX) 5 dim Q(x,X) + + dim Q (x,bX \ X) + 1 I def X+ Q dim 

X+1. Thus Qdim bX 5 def X + Q d i m X + l .  Hence dimbX< 

,< def X + Q dim X + 1. By Corollary 2.3. we have dim X 5 def X -+ 
+ Q d i m X +  1 

Theorem 3.7. Suppose that any compactification of a 0-t.p. 

space is TP-rarefied and L-paracompact. Also if the space X satisfies 

the condition (**) and Q(x, X) is locally compact for every point 

x E X, then dim X Q dim X + Def X. 

Proof: By Lemma 3.6 there exists ~ X E  Co(X) such that 

dim bX = rdbX(bX \ X)+ Q dim X and Def X = rdbX(bX \ X). 

Then dim bX = Def X + Q dim X . By Corollary 2.3. we have dim X I  

< Def X + Q dim X. - 

Remark 33. Theorems 3.6. and 3.7 are given in [5,7] for 

separable metric spaces. 
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