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ABSTRACT 

Free geodetic networks are still very popular in geodesy, surveying and mapping mainly due 
to their unique property of being independent of errors in external data. The free “floating” 
network is a network in which only the internal shape is given by measurements of relative nature 
(Schmitt, 1982). In such a case, the corrections solution vector to the approximate coordinates is 
derived by selecting the best coordinate system. In other words, the term free network refers to a 
network whose adjustment is made free from any kind of external constraints. This means that the 
network can freely translate, rotate or undergo scale change in space. Optimization means 
minimizing or maximizing an objective function which represents the criteria adopted to define the 
“quality of a network”. Generally the quality of a control network is characterized by its precision, 
reliability, strength and economy (Seemkooei, 2001; Kaplan, 2004). In this paper we focus on 
designing an optimal network configuration and optimum observing plan (Combined-Order 
Design Problem) in the sense that they will satisfy the present network quality requirement at a 
minimum cost. A small free geodetic network are simulated and its optimal design is solved by 
nonlinear programming method. The obtained results are discussed and analyzed. 

وتحديد الدقة ، تصميم الشبكات الجيوديسية يعنى اختيار مواضع النقط ونوعية الأرصاد ومكانها في الشبكة
 يؤدى إلى اختيار الأجهزة وطرق الرصد وتحديد عدد مرات تكرار الأرصاد هالتي ستؤخذ بها الأرصاد وهذا بدور

ويتم تعيين هذا التصميم قبل البدء في تثبيت النقط واخذ الأرصاد على .  الدقة المطلوبةواللازم للحصول على
ومن أهم معايير الجودة التي تستخدم في الجودة المطلوبة . أساس أن يحقق في النهاية معايير جودة معينة للنتائج

ويعتبر . لثقة والحساسية والتكلفةوقد تم خلال هذه الدراسة عمل الشبكات الجيوديسية هي الدقة وا. بأقل تكلفة
التصميم تصميما مثاليا إذا أمكن تحقيق معايير نموذج رياضي يجمع بين المتغيرات في تصميم الشبكات الحرة 

ومعادلات ) ةالتغير في مواضع النقط عن المواضع المفروضة والتغير في أوزان الأرصاد عن الأوزان الابتدائي(
 للتغير في مواضع النقط والقيم الصغرى للتغير في أوزان ى والصغرىقيم العظمالدقة المطلوبة وال(القيود 
 للمتغيرات ىوقد نجح هذا النموذج وبإستخدام برنامج التخطيط التفاعلي في تصميم وإيجاد القيم المثل). الأرصاد

 .  وقد تم استخدام البرمجة اللاخطية في حل النموذج الرياضي المقترح. للشبكات الحرة
 

1. INTRODUCTION  

In general, the main task of optimal design of a 
geodetic network is comprised of: 

 Determination of the optimal distribution of 
network points 

 Selection of measurement techniques, and 
 Computation of the optimal distribution of the 

required observational precisions among 
heterogeneous observables.  

In the past, it was very difficult, if not 
impossible, to solve for all aspects of network 
optimization in a single mathematical procedure. 
Instead, the problem of network design was divided 
into sub-problems in which some progress could be 
made. The accepted classification was; (Kunag, 
1996; Kaplan, 2004; Rahil, 2005): 

• Zero-Order Design (ZOD): the reference 
framework of network is defined; 

• First-Order Design (FOD): the geometric shape of 
the network is defined, and the elements to be 
measured are outlined; 

• Second-Order Design (SOD): the measurement 
accuracies (weights) are determined; 

• Combined-Order Design (COMD): both the First-
and Second-Order Design have to be optimally 
solved simultaneously; and 

• Third-Order Design (THOD): addition of 
observations to improve an existing network.    

The aim of this paper is to solve the Combined-
Order Design (COMD) problem of free geodetic 
networks in two-dimensional space analytically. In 
the proposed approach the nonlinear matrix function 
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describing the quality of the network are linearized 
around an initial point using Taylor series. Then 
using the available optimization methods in 
operational research, such as nonlinear programming 
method, the optimum corrections to the initial values 
are computed. 

2. FREE NETWORK ADJUSTMENT 

The problem of the adjustment of free networks 
characterized by a singular normal equation matrix 
was discussed during the last years in a series of 
publications. For all publications, the Moore-Penrose 
or the pseudo-inverse of singular normal equation 
matrix was used (e.g., Bjerhammer, 1967; 
Mittermayer, 1972). The number of linearly 
independent estimable parameters is determined by 
the rank of coefficient matrix within observation 
equations. The pseudo-inverse has the property of 
belonging to the class of least-squares solutions with 
a minimal Euclidean norm of the vector of 
unknowns. The pseudo-inverse enables the 
construction of solutions for classically unsolvable 
adjustment problems.  

The generalized inverse of the matrix N is N+ 
and can be given by: 

N+  =  N ( N N ) -1 (1) 

which achieve the properties: 

N  N+  N  =  N (2a) 

N+  N  N+  =  N+  (2b) 

N+  N  =  ( N+  N )T   (2c) 

N  N+  =  ( N  N+ )T (2d) 

Thus the cofactor matrix Q can be obtained as: 

Q  = N ( N N )-1 N ( N N )-1 N (3) 

This obtained cofactor matrix Q achieves the 
following properties: 

1- It is quadratic, symmetric and singular:  
det ( Q )  =  0 

2- The solution vector (x): 

x̂  = Q U 
where: 

x̂ : has a minimum norm length. 
xT  x  =  min. 

3- Trace (Q)  =  min. 

The results of free geodetic network adjustment and 
their superior quality service as an authentic 
reflection (undistorted mirror image) of the 
measurements’ quality. The above property is 
particularly important today when we employ GPS 

measurements for densification of conventional 
control, where the later is usually of a relatively 
lower quality (Papo, 1999).  

3. OBJECTIVE FUNCTION FOR COMD 
PROBLEM OF FREE GEODETIC NETS 

The purpose of this study is to develop a fully 
analytical mathematical procedure to solve for the 
optimal improvements to the initial design (initial 
locations of points and initial weights). The entire 
solution process can be fully automated by the 
MATLAB program that was written by the authors 
without the need for human intervention. In order to 
solve for the improvements analytically, the major 
problem is how to bring the quality criteria into a 
strong mathematical form, i.e., to establish the 
explicit relation between the preset design criteria of 
precision, reliability, and cost and the unknown 
parameters to be optimized, and that is accomplished 
in this paper by using the technique of Taylor series 
expansion to linearize the non-linear matrix 
equations related to network design, converting 
various network quality requirements into constraints 
on the unknown parameters to be optimally solved 
for. 

3.1 Quality Constraints 

The global variance-covariance matrix in the 
case of free networks is written as: 

( )+σ=σ= APAQC T2
ox

2
ox  (4) 

where:  
2
oσ : is the priori variance factor that is usually 

taken 1.0 at the design stage, 
( )+ : representing the reflexive generalized 

inverse of a matrix. 

Note that in two-dimensional space elements of 
matrix Cx are nonlinear functions of both the 
observational weights and station coordinates, that 
are embedded in the network configuration matrix A. 
Supplied with initial values of both the coordinates 
and observation weights, matrix Cx can be 
approximated using Taylor series restricted to linear 
term as follows (Kuang, 1996) 

Cx= i

m
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1i i
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Note that: 

xo, yo, and zo: are vectors of initial coordinates 
of net points selected, 

po : consists of the approximate values of 
weights. 

Usually, criterion matrix CS is used as the 
precision criteria in this case; the design problem 
seeks an optimal configuration matrix A and weight 
matrix P such that CS can be best approximated by 
Cx. The precision function in this case is:  

Sx CC −  =  min     (optimal design)   (6) 
where: 

: Represents norm of the matrix. 

In order to avoid the precision of some of the 
coordinates that becomes disproportionally better 
than the others. Schaffrin, 1981 adds another 
expression for this criterion so: 

vec (Cx) ≤  vec (CS)     (precision control) (7) 

where: 
vec: The operation produces a vector by 

staking the column of a quadratic matrix 
under another in a single column.  

Finally, by linearization of the precision criteria, 
we can reformulate precision criteria in a compact 
matrix and vector form: 

uw.V −  =  min     (optimal design) (8) 

V1 . w  -  u1   ≤  0        (precision control) (9) 

Denote: 

u =  vec (CS) – vec ( o
xC ) (10) 
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w  = (∆x1, ∆y1,  …. ∆xm, ∆ym,   ∆p1 . . . ∆pn)T (12) 

V1 =  ( ) VII T
uu Θ ,   u1 =  ( ) uII T

uu Θ  (13) 

Θ: represents the Khatri-Rao product, which for any 
two arbitrary matrices Bk,,m and An,m (with the 
same number of columns) yields a matrix Ck×n,m 
(Doma, 2004). 

3.2 Physical Constraints 

Also, the position improvement to be introduced 
should be bounded by the topography consideration 
that may be established in the field by reconnaissance 
i.e.; 

⎭
⎬
⎫

=≤∆≤
≤∆≤

)m.,....,2,1i(byb
axa

i2ii1

i2ii1  (14) 

the above equation can be written as 

lb ≤  w   ≤  ub (15) 

where:   lb and ub : lower and upper bounds of 
unknowns 

3.3 Evalutaion Of Differentials 

It is noticeable that before starting the 
formulation of mathematical model for optimization 
model, we need also partial derivative of 
configuration matrix A, and weight matrix P with 
respect to coordinates of network depending on types 
of observations (Kuang, 1996). 

The elements of the configuration matrix A are 
formed as linear or nonlinear functions of the 
approximate coordinates. The form of functions that 
constitute the elements of the configuration matrix A 
can be determined geometrically depending on the 
specific types of observables proposed. Matrix P 
contains the individual observation weights of the 
observables (more details in Doma 2004).  

4. FORMULATION OF THE MATHEMAT-
ICAL MODEL FOR COMD PROBLEM 

In the summary, optimization means that 
determination of maximum or minimum of one target 
function under some conditions. For example, in the 
geodetic network the target function will be on which 
represents the network quality i.e. precision, 
reliability, and cost. 
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This objective function should be designed in 
such a way that (Kiamehr, 2003): 

• It must realize the required network quality i.e. 
precision, reliability, and cost of network and 
deformation parameters. 

• Resistance to gross error in observations and 
minimize the effects of undetected gross errors. 

• It can allow testing of hypothesis with higher 
significance. 

In the present study, a suitable target function 
that includes precision requirements and physical 
constraints (topography) has been applied. This 
method analytically performs the combined First and 
Second Order Design (Vanicek and Krakiwsky 1986) 
i.e. the simultaneous optimization of the geometrical 
configuration and weight of observation in any 
positioning or monitoring network. In fact, the 
position of net points selected in reconnaissance 
cannot be changed, the mathematical model can be 
reduced to the Second Order Design. On the other 
hand, if we take the accuracy of measurements as 
fixed, the model reduces to the First Order Design. 
One may formulate the mathematical model for 
optimization as follows: 

Minimize:      ║ V . w  -  u ║ 

subjected to :           
   

V1 . w  - u1   ≤   0 
                                                             (16) 

  lb ≤  w   ≤  ub 
where:       

lb and ub : lower and upper 

5. APPLICATION EXAMPLE 

To show the efficiency of using the proposed 
approach for optimization, an example is given in the 
current study. This example illustrates the application 
of the proposed approach to the optimal design of a 
free geodetic network in two-dimensional space. The 
above-mentioned model is a single object 
optimization problem and for solving it one can use 
the mathematical programming method (linear or 
nonlinear programming method). Using the Pc-
Matlab version with a personal computer and the 
developed mathematical model, a computer program 
has been designed and written by authors to solve the 
above mathematical model. This program is based on 
the variation of coordinate method and the variance-
covariance matrix. A two-dimensional trilateration 
network comprising ten points (20 coordinates) is 
considered. In this trilateratin network, distances are 
observed (Figure, 1). The simulated approximate 
coordinates are listed in Table (1). It is assumed that 
an EDM instrument will be used to measure all the 

distances with an achievable accuracy 
222

s )S.ppm1()mm5.0( +=σ , where S is the distance 
computed from the approximate coordinates. The 
optimization is done under precision criteria; all the 
standard deviations of the coordinate components 
must be less than 1.0 mm.  

 
Figure (1): The Two-Dimensional Free Trilateration 

Network  

Table (1): The simulated approximate coordinates of 
network points and the initial standard 
deviations of new pints 

Initial standard 
deviations 

Simulated 
coordinates 
of netpoints 

σy 
 (mm) 

σx 
(mm) 

y  
( m ) 

x 
 ( m ) 

Points 

1.44 1.59 1000 2000 P1 
1.72 2.00 100 5000 P2 
1.55 1.61 2600 5400 P3 
1.27 1.45 3000 3000 P4 
1.23 1.49 4600 1800 P5 
1.48 1.52 2600 400 P6 
1.65 1.42 6000 200 P7 
1.45 1.46 7000 2000 P8 
1.32 1.54 5000 4000 P9 
1.86 1.85 7000 5000 P10 

We would like to find optimal configuration 
(coordinates shifts) and observational plan (weight of 
observations) in this criterion. In the present case 
study, we assume that topographical constraints for 
shifting of coordinates are in the range from –50 to 
50 m in x-, y-directions. 
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7. RESULTS AND DISCUSSIONS 

In this case, both the network configuration and 
the observational plan have to be optimally 
determined in order to achieve the above set 
precision criteria. The optimization algorithm starts 
with an initial design that proposes both the 
approximate locations of network stations as well as 
the types and precision of observations to be made. 
In this case study, we assume that the network 
stations have been chosen as shown in Figure (1). As 
for the observing plan, the initial weights needed to 
initialize the optimization process have been listed in 
Table (3) for all the proposed observations. 

The obtained optimization results are listed in 
Tables (2) to (4) and in Figure (2) and  (3). 

Table (2) gives the optimal coordinate shifts 
solved for each point by optimization model, and the 
optimal station coordinates. 
Table (2): Coordinate shifts and optimal design of 
the network configuration  

Final coordinate of 
netpoints 

Optimal 
coordinate shifts 

y ( m ) x ( m ) ∆y (m) ∆x (m) 

 
Point 

950 1950 -50 -50 P1 
150 4950 50 -50 P2 

2650 5450 50 50 P3 
2950 3050 -50 50 P4 

4649.6221750 50 -50 P5 
2550 350 -50 -50 P6 
5950 205.34 - 50 5.34 P7 

7039.01 2050 39.01 50 P8 
5040.55 4050 40.55 50 P9 

6950 4950 - 50 -50 P10 

Figure (2) shows the initial and optimal locations 
of the netpoints. To clarify the shift (displacement) 
for each point of the network, Figure (3) shows the 
direction and value of shift for each point of network 
with magnification ratio = 10.  

Table (3) lists the initial weights, optimal 
weights and the repetition numbers. From Table (3), 
one can see that, all the observations have positive 
weights and these weights are bigger than an initial 
weights, this means that there are no deleted 
observations in the final observational plane and  in 
order to achieve the standard deviation of 1.0 mm for 
coordinate components, the repetition numbers of the 
observations calculated from the optimal weights. 

Table (4), gives a comparison between the 
required standard deviations of the coordinate 
components and the actual achieved. From the 
obtained results, it can be found that:  

1. The coordinate shifts for each point after applying 
the proposed mathematical model are ranged 
from 50 m at point P2 to 5.34 m at point P7. 
These results show clearly that all the final shifts 
of the coordinate components are in the range of 
the choosen topographical constraint.  

2- The standard deviations of the netpoints after 
applying the optimization model are ranged from 
1.0 mm at point P4 to 0.82 mm at point P3. So, 
all standard deviations of the coordinate 
components are less than and close to the 
required value (1 mm). 

 

 
 

Figure (2): The initial and the optimal locations of 
netpoints 

Figure (3): Initial locations of netpoints and their 
displacement with magnification ratio 
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Table (3): The initial weights vector, optimal 
weights vector and repetition no. 

Observation 
lines 

Optimal design No.

From To 

Initial 
weights
P(Initial) P(Optimal) Repetition 

no. 
1 1 2 0.1019 0.3399 4 
2 1 3 0.0708 0.3060 5 
3 1 4 0.2000 0.2505 2 
4 1 5 0.0769 0.1542 3 
5 1 6 0.1953 0.3216 2 
6 1 7 0.0354 0.3065 9 
7 1 8 0.0278 0.1170 5 
8 1 9 0.0500 0.2253 5 
9 1 10 0.0222 0.0740 4 

10 2 3 0.1560 0.4225 3 
11 2 4 0.0806 0.1522 2 
12 2 5 0.0328 0.2113 7 
13 2 6 0.0365 0.2886 8 
14 2 7 0.0173 0.0346 3 
15 2 8 0.0177 0.0216 2 
16 2 9 0.0400 0.1599 4 
17 2 10 0.0210 0.2263 11 
18 3 4 0.1689 0.2413 2 
19 3 5 0.0590 0.2112 4 
20 3 6 0.0400 0.1662 5 
21 3 7 0.0259 0.0864 4 
22 3 8 0.0323 0.2627 9 
23 3 9 0.1295 0.2423 2 
24 3 10 0.0512 0.2236 5 
25 4 5 0.2500 0.2500 1 
26 4 6 0.1445 0.3109 3 
27 4 7 0.0594 0.1803 4 
28 4 8 0.0588 0.1424 3 
29 4 9 0.2000 0.2242 2 
30 4 10 0.0500 0.2296 5 
31 5 6 0.1678 0.2369 2 
32 5 7 0.2212 0.2322 2 
33 5 8 0.1724 0.2210 2 
34 5 9 0.2000 0.2693 2 
35 5 10 0.0625 0.3199 6 
36 6 7 0.0862 0.2997 4 
37 6 8 0.0456 0.2826 7 
38 6 9 0.0534 0.2126 4 
39 6 10 0.0247 0.0311 2 
40 7 8 0.2358 0.3626 2 
41 7 9 0.0648 0.3168 5 
42 7 10 0.0416 0.2469 6 
43 8 9 0.1250 0.2848 3 
44 8 10 0.1111 0.3347 4 
45 9 10 0.2000 0.2198 2 
 

Table (4): Comparison between the required and  
achievable precisions of  the coordinate 
components after optimization. 

Achievable 
precision 

Required 
precision 

σy 
(mm) 

σx  
(mm) 

σy  
(mm) 

σ x 
(mm) 

Point 

0.84 0.89 1.00 1.00 P1 
0.87 0.97 1.00 1.00 P2 
0.82 0.91 1.00 1.00 P3 
0.91 1.00 1.00 1.00 P4 
0.88 0.95 1.00 1.00 P5 
0.84 0.87 1.00 1.00 P6 
0.90 0.84 1.00 1.00 P7 
0.87 0.87 1.00 1.00 P8 
0.87 0.92 1.00 1.00 P9 
0.93 0.92 1.00 1.00 P10 

 

8. CONCLUSION 

Free geodetic networks are still very popular in 
geodesy, surveying and mapping mainly due to their 
unique property of being independent of errors in 
external data.  

In this paper, the presented mathematical model 
deals with the simultaneous optimization of the 
network configuration (FOD Problem) and 
observational weights (SOD Problem), this problem 
is known as COMD Problem. For practical 
applications, after appropriate network quality 
criteria are given, this optimization procedure gives 
the optimal weights or standard deviations for each 
observable as well as the optimal position 
improvements of the initially selected points to 
obtain an optimal configuration of the network. 
Therefore, the optimization procedure developed is 
very flexible and practical. It is preferable to use the 
proposed mathematical model instead of the trial and 
error method. 

 
9. REFERENCES 

Amiri Seemkooei, A. (2001). “Comparison of 
reliability and geometrical strength criteria in 
geodetic networks.” Journal of Geodesy 
(2001), 75: 227-233. 

Bjerhammer, A. (1967). “Studies with Genralized 
Matrix Algebra.” Bull. Geodesique, no. 85. 

Cross, P.A.(1985). "Numerical methods in network 
design". In: “Optimization and design of 
geodetic networks.” Edited by E. Grafarend 
and F. Sanso, Spring-Verlag, Berlin. 

Doma, M.I. (2004). “Application of Optimization 
Theory to Geodetic Networks Using 
Different Orders Design Problems” M. Sc. 



A. M. Rahil, A. M. El Gohary, M. I. Doma, "On The Application of Fully Analytical Solution for the …" 

Engineering Research Journal, Minoufiya University, Vol. 31, No. 1, January 2008 113

Thesis, Faculty of Engineering, Minufiya 
University, Minufiya, Egypt.  

Kiamehr, R., (2003). “Multi Object Optimization of 
Geodetic Network” NCC Geomatics 82 
conferences, Tehran, Iran. Accepted NCC J. 
Engineering Surveying. 

Kuang, S.L. (1996).”Geodetic Network Analysis 
and Optimal Design: Concept and 
Applications.” Ann Arbor Press, Inc., 
Chelsea, Michigan. 

Papo, H. (1999). “Datum accuracy and its 
dependence on network geometry” 
International Scientific and Technical 
Conference dedicated to the 220th anniversary 
of Moscow State University of Geodesy and 
Cartography, May 24-29, 1999.     

Schaffrin, B. (1981): “Some proposals concerning 
the diagonal second order design of geodetic 
networks.” Manuscripta Geodetica, 6 (3), 
303-326.    

Schmitt, G.(1982). “Optimization of geodetic 
networks” Review of Geophysics and Space 
Physics, Volume 20, No.4. 

M. Onur Kaplan; Tevfik Ayan, and Serdar Erol, 
2004. “The Effects of Geodetic Configuration 
of the Network in Deformation Analysis” 
FIG Working Week 2004, Athens, Greece, 
May 22-27, 2004. 

Mittermayer, E. (1972). “A Generalization of the 
Least-Squares Method for the Adjustment of 
Free Networks.” Bulletin Geodesique, No. 
104. 

Rahil, A.M.F. (2005). “A new proposed for solving 
the combined order design problem” ERB, 
Vol. 28, No. 3, 2005, Menufiya University, 
Faculty of Engineering, Shebien El-Koom, 
Egypt, ISSN 1110-1180. 

Vanicek, P. and E.J. Krakiwsky (1986). “Geodesy 
the concepts. Second edition” North-Holland 
Publishing company. 

 




